EO Data Today and Application Fields

Denise Petala

♦ IGD GROUP AE

Spatial Information Management, Experiences and Visions for the 21st Century

Equipment and know how in many application fields, from surveying till EO data and RS.

Infotop SA, Geomet Ltd., Dynatools Ltd.

- Leica, Pentax, DSNP, Quante Baulaster, Moba controls, Damalini, etc.
- LH Systems, DVP, etc.
- ERDAS, OTT, etc.
- SPOT IMAGE, EURIMAGE, EUROMAP, ISTAR, etc.

Total solutions, combining "new" and "classic" technology.

Presentation phases

Categories of Satellite Data

Available Satellite Data

- Optical Sensors
- High Resolution & Russian Data
- Radar Sensors

Prospective Satellite Data

Geographical Data

Remote Sensing Data received by Aeroplanes -Helicopters

Method of acquisition of Satellite data

- Digital sensors with thousands tiny detectors that are measuring the reflected electro-magnetic energy (spectral measurements).
- The spectral measurements are transferred to Earth as numbers and then translated as color or shade through PC, for the creation of an image.
- Depending on the designed sensitivity of the detectors, the sensors are measuring the reflected energy in different and pre-fixed areas of the spectrum.

Categories of Satellite Data

Optical Data

- Panchromatic Data
- Multispectral Data

Radar Data

Categories of Satellite Data

Optical Data

- Passive sensors
- Measurements of electromagnetic energy, coming primarily from the Sun and bounches off the Earth surface

Radar Data (SAR)

- Active sensors
- Transmition of radar signal (microwave) and measurements of the strength and other characteristicsof the return signal after its reflection off the Earth's surface
- No impact of clouds, fog, haze & darkness

October 2000

Spatial Information

Vanagement, Experiences and Visions

for the 21st Century EO Data Today and Application Fields

Categories of Satellite Data

Panchromatic Data

- One band (visible near infrared part of the spectrum)
- B/W
- Better resolution

Multispectral Data

- Usually 3-7 bands, in various patrs of the spectrum
- Colored
- Band combinations in the visible and infrared parts of the spectrum

Basic characteristics of Satellite data

Spatial Information Management Experiences and Visions for the 21st Century

- Mode: optical (panchromatic, multispectral), radar
- Area of coverage: the area in the ground that can be covered by a single image (X km x Y km).
- Bands: it refers mostly in the multispectral data, where the different combinations of the bands can lead to results and conclusions.
- Acquisition date: either based on the years (recent or archive data) or by seasons (eg spring)

EO Data Today and Application Fields

Main advantages of Satellite data

Digital

- Updated
- Fast delivered
- Cost effective (especially for large scale projects)
- World wide coverage without restrictions
- Synoptic (a single image has technical and environmental information, morphology, land use etc.)
- Accurate
- Flexible

Spatial Information Management, Experiences and Visions for the 21st Century

Satellite data providers

Spatial Information Management, Experiences and Visions for the 21st Century

SPOT Image (exclusive distributors)
EURIMAGE
EUROMAP
Space Imaging Europe
Earthwatch (through EURIMAGE) – Q4/2000
Orbimage (through SPOT Image) – Q2/2001

EO Data Today and Application Fields

Spatial Information Management, Experiences and Visions for the 21st Century

Data	Mode	Resolution	Area	Acq.
				from
SPOT P	panchromatic	10 m	60 km x 60 km	1986
SPOT XS	multispectral (3 bands)	20 m	60 km x 60 km	1986
SPOT Xi	multispectral (4 bands)	20 m	60 km x 60 km	1998
SPOT Vegetation	multispectral (4 bands)	1 km	2,250kmx2,250km	1998

Processing in many different level, from raw till ortho. Programmation and stereoscopic acquisition available.

EURIMAGE - Data

Spatial Information Management, Experiences and Visions for the 21st Century

Data	Mode	Resolution	esolution Area	
Landsat TM 4/5	multispectral (7 bands)	30 m	180km x180 km	1982
Landsat TM 7	multispectral (7 bands)	30 m	180km x180 km	1999
	+ 1 panchromatic	<u>15 m</u>		
ERS	radar	12,5m	100km x 100km	1991
JERS	radar	radar 18 m 75km x 75km		1992
Landsat MSS	multispectral (4 bands) 80 m 180km x180		180km x180 km	mid '70s
Resurs 01	multispectral (5 bands)	170	600km x 600km	1994
NOAA AVHRR	multispectral (4/5 bands)	1 km	840km x 840km	1978
KVR 1000	panchromatic	2 m	40 km x 40 km	1987
TK 350	panchromatic	10 m	200km x 300km	1987
MK4	panchromatic	6 m	180km x 180km	1988
	multispectral	10 m		
KFA 1000	panchromatic 6,7m 120		120km x 120km	1990
	mutispectral	10 m		
Archived missions				

EUROMAP - Data

Data	Mode	Resolution	Area	Acq. from
	nonchronatio	5.9 m	70/0000 70/000	1006
		<u> </u>		1990
IRS-10'DLISS III	multispectral (4 bands)	<u>25m</u>	141kmx141 km	1996
IRS-1C/DWfS	Multispectral (2 bands)	188 m	804km x 804km	1996

High Resolution Satellite Data

Spatial Information Management, Experiences and Visions for the 21st Century

Data	Mode	Resolution	Area	Acq. from
Ikonos (SIE)	panchromatic	1m	11 kmx 11 km	1999
	multispectral (4 bands)	4m	11 kmx 11 km	1999
Quick Bird	panchromatic	1 m 22 km x 22 km		2000
	multispectral (4 bands)	4m	22 km x 22 km	2000
Orbview 3	panhromatic	1m	8 km x 18 km	2001
	multispectral (4 bands)	4m	8kmx8km	2001
Orbview 4	panchromatic	1m	8kmx8km	2001
	multispectral (4 bands)	4m	8kmx8km	2001
	hyperstpectral (200 bands)	20 m	5kmx5km	2001
SPOT 5	panchromatic	2,5m–5m	60 km x 60 km	2002
	multispectral (4 bands)	10 m	60 km x 60 km	2002

Application fields & project examples

- Geographical data production: DEM, Ortho, Land use maps, vector
- Controls of set-aside
- SISMOSAT: Creation of seismic hazard maps
- Athens from Space: multimedia tourist guide
- Environment management and monitoring
- Change detection, etc.

EO Data Today and Application Fields

Geographical Data

*****DEM

Spatial Information Management, Experiences and Visions for the 21st Century

Ortho panchromatic or multispectral

Clutter 5-class or 15-class

Vectors 7-class

Geographical Data

Spatial Information Management Experiences and Visions for the 21st Century

Data	Туре	Resolution	Area	Accuracy
DEM from SPOT P	raster	20 m	Whole Greece	25-30 m
Ortho SPOT P	raster	10 m	Whole Greece	20 m
Ortho SPOT XS	raster	20 m	Many areas of Greece	25-30 m
Ortho Landsat 5	raster	30 m	Whole Greece	30-45 m
Clutter - 5class	thematic	20 m	Whole Greece	25-30 m
Clutter - 15class	thematic	20 m	Cities	25-30 m
Linear data-7 class	vector		Whole Greece	

For the production of all the above, knowledge and techniques of Remote Sensing, Photo-interpretation, Digital Image processing, Cartography, Surveying and GPS were combined.

Remote Sensing – Airborne EO data

- *****By helicopters
- *****By airplanes
- New high resolution camera (up to 24 cm) Pilot in Greece within 2000

Airborne Remote Sensing Data

Acquired by Helicopters

- Real time topographical data acquisition, with the help of differential GPS and laser scanner.
- Two video cameras for acquisition of vertical and oblique images, simultaneously with the laser scanner function.
- Based on these data, DTM is processed and images rectified in the same projection system.

Acquired by Aeroplanes

- Real time data acquisition, using radar systems.
- Processing, projection of the SAR data and DTM production, simultaneously with the data acquisition.

 Production of data and accessional processing of the data and the DTM, depending on the demands of the end user.

New high resolution camera

- 3 strips (forward, nadir, backward)
- each point is captured 26 times
- true ortho
- Resolution: 24 cm in 6,000 m
- RMS: X/Y 20 cm, Z 30 cm in 6,000 m
- Pilot in Greece within 2000

