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ABSTRACT
The contribution treats a sophisticated concept in the area of GPS-based height determination with
components being appropriate to branch out into different classes of standard approaches, depending
on the kind of data sources as well as on the principal target. So, besides a GPS-based height
determination, also a height system transformation may be set up. Basically any kind of height data,
namely geoid models N (e.g. EGG97),  heights H, levelling ∆H, GPS heights h and GPS baselines ∆h
may be combined. Partly a Finite Element Model (FEM) is set up for the representation of height
reference surfaces (HRS). This FEM is parametrized by bivariate polynomials sets, and continuity
conditions guarantee a continuous transition of the FEM surface along the edges of neighbouring
meshes in any area size. In opposite to digital terrain models, the nodes of the FEM mesh may differ
from the position of the data used for the FEM determination.

The first part of the contribution treats the class of already practical working standard approaches,
developed to transform in a statistically controlled way ellipsoidal GPS heights h into heights H of a
standard height system. First the role of use and the kind of a datum and systematics adaption of geoid
models N in a GPS height integration are discussed. The „geoid refinement approach“ standard means
that a datum adapted geoid model N is used as direct observation, while the FEM serves as additional
overlay to improve the final representation of the HRS. The special case of the „pure FEM approach“
arises, if  the FEM representation of HRS is computed purely by geometric observations H, ∆H, h, ∆h.
The „pure geoid approach“ means, that only a datum adapted geoid model N is used in a GPS height
integration. The  three approaches provide a flexible area of models implemented in the software
HEIDI2. Different pilot projects in several parts of Europe finished successfully, and the height
integration concept is meanwhile used as a standard in some state survey agencies. The experience
shows that a high precision level for a GPS based height determination up to a 5 mm level in rather
large areas is achieved, e.g. using the EGG97.

The second part and class of approaches treats the application of the FEM component for the purpose
of height system transformation (e.g. conversion of NN-heights to normal heights).

The third part of the presentation and class of approaches considers the so called general approach,
where the HRS is completely established by a FEM, using different datum adapted geoid models N,
terrestrial height information H and ellipsoidal GPS heights h as data sources. The result of the com-
putation and "geoid mapping" respectively, leads to a Digital FEM Height Reference Surface (DF-
HRS). The DFHRS may be set up as data base for a datum free direct GPS-based online heighting in
DGPS networks. First results of a pilot project in the German SAPOS network are reported.

1. INTRODUCTION

The transformation of a geocentric cartesian position (x,y,z) determined from DGPS provides
the plane position represented by the geographical latitude and longitude (B,L) and the ellip-
soidal height h, all referring to the datum of the respective reference station(s) used in DGPS.
Both (B,L) and h depend on the metric and shape of the reference ellipsoid (a=main axis,
f=flattening) used in the computation of (B,L,h). In general the GRS80 or the WGS84 ellip-
soid are used in the context with GPS. The transition of GPS results (B,L,h)1, in the following
described as system 1 to a set of national network coordinates (B,L,h)2, described as system 2,



is to be performed by a threedimensional similarity transformation. There three translations
(u,v,w), three rotations (εx,εy,εz) and one scale difference ∆m between both datum systems
have to be taken into account. Using a taylor series expansion with linearization point (B,L,h)1

and assuming small rotations we may write the datum transition from system 1 to system 2 on
splitting the threedimensional problem equivalently into the plane and the height component
in the following way [9],[5]:
Plane components (1), (2) of the threedimensional datum transition
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Ellipsoidal height component (3) of a threedimensional datum transition
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                   (3)

N(B) and M(B) are introduced as the latitude dependent quantities of the so called normal and
the meridian radius of curvature respectively. For W(B) and e2 we have W(B)=a/N(B) and
e2=2f-f2. In general the parameter changes ∆a and ∆f are known, and the respective quantities
are introduced as deterministic corrections. Respective corrections due to ∆a and ∆f are
therfore not mentioned in the following.

The integration of GPS-results may be carried out with respect to (1), (2) by using only plane
coordinates (B,L)2 in the domain of the identical points with respect to the determination of
the datum parameter set d=(u,v,w,εx,εy,εz,∆m). This has the advantage, that in addition to the
ellipsoidal GPS height h1 no further height information (ellipsoidal height h2, geoid NG and
standard heights H2) is necessary from the national network system 2 [14].
If we take vice versa a look to (3) we need in the context with H2=h2-NG  the introduction of a
so called „geoid“ model NG, as we generally dispose only on the standard heights H2 referring
to the physically defined height reference system HRS (fig.1). But in practice we have to con-



sider, that a geoid model NG taken from a geoid data base [3] has – being another surface in
space – an own more or less small but unknwon datum dG=(u,v,w,εx,εy,∆m)G.

Fig. 1: Ellipsoidal GPS height h, height reference surface HRS or briefly „geoid“ and earth
surface EOF at a point  P(B,L)

Instead of the „raw“ ideal and datum effects neglecting standard formula

H = h – NG     (4a)

we arrive starting from (3) in real life practice at the complete formula reading

))GN(dG(N(d)hh)G,??my,exN(u,v,w,eG(N,??my,ex(u,v,w,ehhH ∂+−+ ∂=∂+−∂+= 11112  .  (4b)

From (1), (2) and (4b) follows that a threedimensional GPS-integration based on standard
heights H2 and a geoid model NG  has to consider in total 13 parameters within d and dG. As-
suming that the data base geoid values NG  are referred to (B,L)1, we see directly that the para-
meters within the different sets d and dG separate due to the variation of the heights h1 and NG
within the coefficients belonging to d and dG respectively (1),(2),(3). The standard approach
of a threedimensional transformation with only one common set of seven parameters d is
therefore not free of systematic errors.

If we however restrict a GPS-integration to the isolated GPS height integration problem, mea-
ning the transformation of GPS heights h1 to standard heights H2, we derive from (4b) :
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        (5)

We recognize from (5), that due to some common coefficients one set of parameter-diffe-
rences d‘=(u‘=u-uG; v‘=v-vG; w‘=w-wG; εx‘=εx-εx,G; εy‘=εy-εy,G) may be introduced instead of
two different sets in a geoid-model based GPS-height integration (8a,b,c). Separate parame-
ters have to be kept only for the scale parameters ∆m and ∆mG .

2. STANDARDS OF GPS HEIGHT  INTEGRATION

With the trend of replacing old national datum systems in favour of ITRF-related datum
systems and respective DGPS reference station systems (like e.g. SAPOS in Germany), the
datum problem for the plane component (B,L) in GPS-based positioning will vanish by and
by. But for the reason of a physically different height reference surface HRS for the standard
heights H (fig. 1) defined by geopotential numbers, the problem of a transition of ellipsoidal



GPS-heights h1 to the standard heights H2 referring to a HRS – or briefly spoken „geoid“ (a
true geoid for an orthometric height system, a quasi-geoid for a normal height system etc.)  –
will remain .

Different approaches have been developed from the „Karlsruhe working group“ [7] up to
now. The advantages of the above splitting into the plane (1),(2) and height component (5) led
to a powerful and flexible set of GPS-integration approaches [4], [5], [6], [7] which will be
presented in the following chapters.

2.1 Finite Element Representation (NFEM) of the Height Reference Surface (HRS)

A powerful and central tool within the GPS height integration approaches of the „Karslruhe
working group“ consists in the representation of the „geoid“ NG or better the height reference
surface HRS (fig. 1) as a finite element surface. In this way the finite element model
NFEM(p,B,L) of HRS represents in the ideal sense h=H+NG - datum free and independent of
the type of the standard height system H - the height NG of the HRS over the ellipsoid as a
function of the plane position (B,L) and the parameter vector p. As described in details in [4]
and [5] the finite element representation NFEM(p,y,x) of the HRS is performed over a square
grid with nodal points. The plane position (B,L) is replaced by metric coordinates
(y(B,L)=“Eastern“ and x(B,L)=“Northern“) such as UTM or Gauß-Krüger coordinates to be
computed from (B,L).

Fig. 2: Nodal points • and edges of a FEM-meshing and geodetic measurements (h,H,∆H,∆h)
used (eventually together with a geoid-model NG as additional data source) for the de-
termination of the NFEM(p,y,x) model of the HRS.

The mesh size and shape (fig.2) and at the same time the approximation quality of
NFEM(p,y,x) with respect to the true HRS (fig. 1) may be chosen arbitrary. A special advan-
tage and characteristic of the NFEM(p,y,x) representation consists last but not least in the
fact, that the nodal points (•, fig. 2) of the FEM grid are totally independent of the geodetic
network and data points (h,H,∆H,∆h and geoid data NG ), which are used for the determina-
tion of the parameter vector p of NFEM(p,y,x). Without loss of generality we choose in the
following bivariate polynomials of degree l as basic function to carry the surface
NFEM(p,y,x) within the different meshes. The corresponding polynomial coefficients are
introduced as aij,k , so that the parameter vector p consists of all coefficiental sets aij,k over m
meshes (i=0,l; j=0,l and k=1,m).



Dependent on the plane position (y,x) the local „geoid height“ NG is to be received from the
finite element representation NFEM(p,y,x) by first identifying the corresponding k-th mesh
according to the position (y,x) by means of the vector of nodal point positions. Then NG is to
be evaluated from NFEM(p,y,x) by the local polynomial with coefficients aij,k at the plane po-
sition (y,x).

To imply a continuous surface NFEM(p,y,x) one set of continuity conditions of different type
C0,1,2 has to be set up at the computation of NFEM(p,y,x) for each couple of neighbouring
meshes m and n. The continuity type C0 implies the same functional values along each
common mesh border. The continuity type C1 implies the same tangential planes and the con-
tinuity type C2 the same curvature along the common borders of the HRS model
NFEM(p,y,x). The continuity conditions occur as additional condition equations related to the
polynomial sets of the coefficients aij,m and aij,n  of each couple of neighbouring meshes m and
n. The number and the mathematical contents of these condition equations depend on the
polynomial degree l as well as on the continuity equation type [5].
The standard in the application of NFEM(p,y,x) in GPS height integration research and pro-
jects up to now was to use C0 conditions and a degree of l=1 for a small mesh sizes up to 10
km, and degrees l=2,3 for larger mesh sizes. For the case l=3 and Co-continuity for
NFEM(p,y,x) we have to introduce for each neighbouring mesh border the following
condition equations [5] :
da30 dx3 + da21 dx2dy  + da12 dxdy2+ da03dy3                                                                 = 0              (7a)
da30∆3 + da20∆2dy + da10∆dy2 + da00dy3                                                                          = 0              (7b)
da10dxdy2  +  da01dy3  +  2da20∆dxdy  +  da11∆dy2  +  3da30∆2dx  +  da12∆2dy   = 0              (7c)
da20dx2dy + da11dxdy2 + da02dy3 + 3da30∆dx2  + 2da21 ∆dxdy + da12∆dy2              = 0              (7d)

With respect to the known nodal points A(yA,xA) and E(yE,xE) of the mesh grid (fig. 2) we in-
troduced the abbreviations dx=xE-xA and dy=yE-yA as well as ∆=dy⋅xE-dx⋅yA and daij=aij,m -aij,n

in (7a,b,c,d).

2.2 Standard approaches of GPS height integration

Starting with formula (5) we immediately arrive at the so called „pure geoid approach“. This
approach is to be applied in a GPS height integration, as soon as good geoid information
NG(B,L) is available. The parameters fo the datum part ∂h,G(d‘,∆mG) have to be estimated.
With some simplification in the scale term1 for ∆m,  the „pure geoid approach“ reads in the
corresponding system of observation equations as follows:

h               + v  =  m⋅ H + NG                  (8a)
NG (B,L)  + v  =               NG   + ∂h,G (d‘, ∆mG)                 (8b)
H              + v  =       H    (8c)

                                                       
1  The scale term following (3) looks like the expression for m in (12a).
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GPS heights h, a geoid model NG (B,L) and terrestrial heights H may be used as obervations.
Of course the formulas are easy to extend to levelling ∆H and GPS height baselines ∆h, which
are also both included in all subsequent approaches. Apart from the datum part ∂h,G (d‘,∆mG)
the geoid model NG (B,L)  is treated as so called ‚direct observation‘. The datum part ∂h,G

(d‘,∆mG) may also model and remove some systematics [4], [5], [6], [7].
In polarity to (8a,b,c) and above all in the case, that no geoid-information exists, we may
derive the HRS completely from the observations (h,H,∆H,∆h) as finite element represen-
tation NFEM(p,y,x) of the HRS as given in (6). This approach is called the „pure finite ele-
ment approach“. It reads:

h + v  =  m⋅ H + NFEM(p,y,x)    (9a)
H + v =       H .                           (9b)

The powerful synergy of both above approaches finally leads to the so called „geoid-refine-
ment approach“. It is used for the case that the available geoid information NG (B,L) is to be
refined by a finite element model NFEM(p,y,x), which is acting as additional overlay to im-
prove the geoid model (fig. 3). The geoid-refinement approach reads:

h               + v  =  m⋅ H + NG              (10a)
NG (B,L)  + v  =               NG   + ∂h,G (d‘, ∆mG) + NFEM(p,y,x)              (10b)
H              + v  =       H  (10c)

All above GPS-height integration approaches are implemented as standard models in the
software package HEIDI2 ©Dinter/Illner/Jäger. The approaches are described in different
papers and were proved in different projects [2],[4],[5],[6],[7],[8],[10],[11],[12].

Fig. 3:  Geoid-refinement approach as a synergetic combination of geoid information
NG(B,L) submitted to a datum change (datum 1 -> datum 2)  and the  finite element
model NFEM(p,y,x). NFEM(p,y,x) is introduced to model remaining systematics
(dotted) between the introduced geoid model NG(B,L) and the true height reference
surface HRS (=“Höhenbezugsfläche (HBF)“).



2.3 Example of a GPS height integration performed with the software HEIDI2

The following example of a GPS height integration treats the use of the commercially avail-
able EGG97 geoid model [3] for an integration of GPS heights h into the normal height
system H of the height network of Tallinn, Estonia. The network has an extension of 40 km
by 25 km. The computations were done by the author in the frame of a TEMPUS project bet-
ween the Tallinn Technical University, the University of Technology Karlsruhe and other
European universities. The given 23 ellipsoidal GPS-heights h in the EST92 datum were in-
troduced with a quality of 3 mm, as proved before in a free adjustment of the respective GPS
height baselines. The given normal heights were introduced with a quality of 3mm, and the
EGG97 observations NG(B,L) with a precision of 5 mm. The different versions of the GPS
height integration were computed on the base of the pure geoid approach (8a,b,c) with the
software HEIDI2.

15km

15mm

Net

Residuals

Fig. 4: GPS height integration for the Tallinn network by the pure geoid approach without
taking a necessary datum-transition ∂h,G (d‘,∆mG) part for h and NG  into account: The
residuals in the known control points - treated as new points - show the systematics of
a datum tilt up to ± 3.5 cm.

The result of a first version, where - in sense of the unrealistic ideal (4a) - no datum transition
∂h,G(d‘,∆mG) for h and NG was introduced, is presented in fig. 4. Each known point was once
computed as a „new point“ determined by „GPS and geoid“. The residuals in the identical
points H are in the range of  up to ± 3.5 cm and show the typical effect of a neglected datum
tilt in this high range.

The fig. 5 shows the next set of computations in the pure geoid approach (8a,b,c) used as
computation model for a GPS height integration. Now a datum transition ∂h,G(d‘,∆mG) was ta-
ken into account. The residuals in the known control remain less than 1 cm, the mean residual
is in the range of  ± 4 mm. In this version of a GPS-based height integration all observation
components are consistent with their assumed a priori precision and no gross errors occur in



all runs. An additional geoid refinement might be computed by the geoid refinement approach
(10a,b,c).

For further examples of GPS height integration in medium and in large scale networks and
also due to the other above approaches like the geoid refinement approach (10a,b,c) and the
pure FEM approach (9a,b) it is referred to [4],[5],[6],[7],[10],[11],[12].

15km
Net

20mm
Residuals

Fig. 5: GPS height integration for the Tallinn network by the pure geoid approach on taking
the necessary datum-transition ∂h,G (d‘,∆mG) part for h and NG  into account: The residuals in
the known control points - treated as new points – keep in the mean range of only ±  4mm.

3. HEIGHT  SYSTEM  TRANSFORMATION

The essential components of the above GPS height integration concept  -  namely the datum
transformation part for heights (3) and the finite element representation NFEM(p,y,x) of a
HRS (6) -  may be transferred to the problem of transforming old heights HHold to new heights
Hnew of a new height system. In analogy to the above „geoid refinement approach“ the most
general approach for a height system transformation reads:

HHold  +   v   =             Hnew   + ∂H(d) + NFEM(p,y,x)    (11a)
HHnew  +   v  =              Hnew                               (11b)

The datum transformation parameters d as well as the parameters p of the finite element
model are to be determined by identical points (HHold ,Hnew) in both systems.



4. ONLINE GPS-HEIGHTING  –  PRODUCTION AND APPLICATION OF A
DIGITAL  FINITE  ELEMENT  HEIGHT  REFERENCE  SURFACE

4.1 Digital Finite Element Height Reference Surface (DFHRS) concept for an online GPS-
Heighting

The profile and target of an online height positioning is easy to formulate (see fig. 6): An
ellipsoidal GPS-height h, determined at a position (y,x), has to be converted directly to the
height H of the standard height system. The converted height H should result online after ap-
plying a correction to h, and the resulting H  should not suffer with a quality-decrease compa-
red to the heights H resulting from a GPS height integration in postprocessing (approaches
chap. 2)

In this chapter a general concept is presented, which fulfils all above requests and shows be-
sides this even some more positive aspects. The concept is to produce in a first step in a con-
trolled way a so called Digital-Finite-Element-Height-Reference-Surface (DFHRS) as a new
kind of data base product (= production step). The second step is to make this data base
accessible online  –  in an active or passive way -  for DGPS heighting (= application step).
That means, that either the DGPS user has the DFHRS at his disposal or the DGPS service
exclusively uses the DFHRS for the evaluation of a correction ∆ to transform a GPS height h
to the height H of the standard height system (principle, see fig. 6).

The production step of the DFHRS reads in the system of observation equations as follows:

h               + v  = H  -  (h+N⋅W2 )⋅ ∆m  +  NFEM(p,x,y)  (12a)
NG (B,L)  + v  =                                         NFEM(p,y,x)   -  ∂h,G (d‘, ∆mG)              (12b)
H             + v  = H  (12c)

Identical points (H, h) and if available, one or a number of geoid models NG(B,L) are used as
observations to produce the DFHRS. The DFHRS on the right side is represented completely
by the finite element model NFEM(p,x,y) of the HRS. NFEM(p,y,x) is modeled like in (6)
with continuity conditions. The geoid model input NG (B,L) is „mapped“ to the DFHRS by re-
moving the datum part ∂h,G(d‘, ∆mG). An additional NFEM-refinement term may be set up in
(12b). The production step of the DFHRS (12a,b,c) has to be embedded in a statistical quality
control concept, e.g. of a least squares estimation, so that any component including the input
of „mapped“ and datum-adapted geoid-model, can be controlled.

The decisive components of the production step, which are afterwards needed in the applica-
tion step - namely in an online GPS-heighting - are contained in (12a). Equation (12a) leads to
the following correction scheme, which has to be applied to the GPS height h in an online
application of the DFHRS data base:

H =  h + ∆ =  h  + corr1  +  corr2  =  h  -  NFEM(p,y,x)   +   (h+N⋅W2 )⋅ ∆m                       (13)

The first correction part „corr1“ is due to the DFHRS („geoid correction“), and „corr2“ is due
to the scale ∆m between the GPS heights h and those of the standard height system H.



4.2 Example of DFHRS production

Fig. 7 shows the finite element grid of the 30km by 30km „Mosbach“ area near Heidelberg,
where a DFHRS was computed in the frame of a pilot project [1]. A first kind of DFHRS was
produced using only identical points (H, h) in both systems, without geoid information
NG(B,L) and a respective „geoid mapping“ (12b). The DFHRS was evaluated for this case
with a polynomial degree l=1 over a 16 mesh grid. In addition to the scale parameter ∆m  the
complete DFHRS for the area (fig. 7) could in this case be represented by k=16 sets of each
three coefficients pk=(aoo,ao1,a1o)k. For the special case that besides the identical points (h,H,
see fig 7.) no geoid information was used for the evaluation of the DFHRS, the precision of
the pk of the DFHRS restricts the DGPS-based online heighting to a quality range of (1-3) cm.

    

Fig 6: DFHRS (left) and its use (right) as DFHRS data base for a DGPS-based online
heighting  (h →  H).

A quality increase and simultaneously a reduction of the number of identical points is
achieved  by an additional „geoid mapping“ (12b). The resulting DFHRS (12a,b,c,d) is then
better than the geoid input, meaning that the additional mapping of e.g. the EGG97 cm-geoid
will provide a cm or sub-cm quality for the resulting DFHRS product, as proved in respective
investigations [12].

4.3  Outlook for the DFHRS concept

The DFHRS can be characterized as a new product appropriate for an online GPS-heighting
with best quality and economical properties. The wellknown datum problem and individual
datum calibration steps using identical points (h,H) in/before GPS heighting are completely
dropped out. The DFHRS enables a direct GPS-heighting with a general usability for anybody
in the frame of DGPS-applications and DGPS services.

The production of the DFHRS (12a,b,c) is performed as an overdetermined least squares
adjustment, which enables a quality control of all components including the input of geoid
models. The computation of the DFHRS product may be repeated at any time, as soon as new
data (h, H, ∆H, ∆h and NG) arise, or even if a change of the height system type or datum is in-
tended.



The variation of the mesh size further enables to produce on demand different DFHRS pro-
ducts with a different geometric quality (and prize) for an online height positioning purpose.
Besides that there are two different ways for a DFHRS marketing: The first way is to keep the
DFHRS on the side of the data- and DFHRS owner and transmit only the correction ∆ (13) by
the DGPS-service.

Fig. 7:  Meshing and data design (H,h) of  a DFHRS computation for the Mosbach region.

This requires however that the DGPS customer transmits (B,L,h) to the DGPS-service and
gets back the corrected value H. The other way is of course to sell - like usual in the context
with modern geoid-models [3] – the DFHRS data base directly to the DGPS user.

The first experiences with the DFHRS concept (12a,b,c) are much promising [12],[1]. As in
most cases geoid information is available [3], the DFHRS evaluation may in general be set up
together with a „geoid mapping“ (12b). For this complete case (12a,b,c) the best quality and
control of the DFHRS will be achieved and at the same time the number of indentical points
(h,H) for control and datum parameter estimation remains small even for large areas. The de-
velopment of comfortable software for the production of DFHRS data bases is continued, and
consequently also the implementation of DFHRS data bases in DGPS online software
packages [13], [14].
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