FIIG

FIG WORKING WEEK 2017 BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Collaboration –

Standards for BIM information exchange and process management

Part 1: Management Part 2: Data

Who writes the BIM standards?

ISO: TC 59 - Buildings and civil engineering works

SC 13 – Organization of information about construction work

Liaison to - ISO/TC 211 GIS

- OGC
- buildingSmart !!!!!!!

König et al, "Wissenschaftliche Begleitung der BMVI Pilotprojekte zur Anwednung von Building Information Modeling im Infrastrukturbau" BMVI, 2016, Source: Thomas Liebich

FIG WORKING WEEK 2017 BIM FOR SURVEYORS

WG1: Strategy (Roadmap)

WG2:

Exchange Information (Data, Adoption of IFC, LOD, Information Container for Data Drops)

WG3:

Information Delivery Specification (Process, IDM, MVD)

WG4: Data Dictionary (Property Server)

König et al, "Wissenschaftliche Begleitung der BMVI Pilotprojekte zur Anwednung von Building Information Modeling im Infrastrukturbau" BMVI, 2016, Source: Thomas Liebich

bsi.

The BIM Process ("Race Track")

BS1192-2 will be the base for ISO19650 !

- project- <u>and</u> asset information model (**PIM, AIM**)
- Information
 - Graphical Model
 - Non-Graphical Data
 - Documentation
- Management
 - EIR
 - BEP
 - MIDP
- Sequential Stages 1-7

1192-2, Author: Mervyn Richards

$\mathsf{EIR} \to \mathsf{BEP} \to \mathsf{MIDP}$

Employer's Information Requirements

Pre tender: The employer sets standards and processes to be adopted by the supplier as part of the project delivery process

PAS 1192-2 gives information types that have <u>at least</u> to be defined. E.g. Levels of Detail of BIM-Models, milestones, data formats (including version numbers), and

- coordinate systems and project base point
- Necessity of pre-construction survey

$EIR \rightarrow BEP \rightarrow MIDP$ BIM Execution Plan

Pre contract: The <u>bidder/supplier</u> shows that he meets the capability, capacity and competence to meet the EIR with a suggested BEP **Post contract:** All parties agree and committed to the refined BEP **Master/Task Information Delivery Plan:** Detailed list of information deliverables

The BEP e.g. contains agreements on

- Surveying strategy (pointclouds, LIDAR, GNSS)
- Origin and Orientation of the project base point, related to geodetic datum and projection
- "as-constructed"-survey: handover for operation stage

DELIVERY EXECUTION NEED **bsi** Master Information **Employer's Information** PROCUREMENT CONTRACT AWARD **BIM Execution Plan Delivery Plan** Requirements (BEP) (MIDP) (EIR) Capex start Project Information Model (PIM) Asset Information Model (AIM) Information Model Documentation ъ **Non-Graphical Data** MOBILIZATIC ASSESSMENT **Graphical Model** ANDOVER CONCEPT DESIGN OPERATION Mai COMMON DATA ENVIRONMENT (CDE) Opex MAINTENANCE and USE (PAS 1192-3) start SUPPLIER'S NFORMATION For details on supplier's information exchanges and employer's decision EMPLOYER'S points see DECISION POINT **CIC Scope of Services** Legend Management Information Blue BS1192-2, image from http://www.atd.london/home-1/bim/pasprocess process 1192-2, Author: Mervyn Richards

B FARO NEO

Production: CDE (common data environment)

Implementation: As central model (data base) or feautured model (seperated files/documents/models)

BS1192-2 also defines

- Work in Progress codes (WIP) that show the status (e.g. checked, published,..)
- File and layer naming conventions
- The necessity of LOD (level of development)

FIIG

FIG WORKING WEEK 2017 BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Collaboration –

Standards for BIM information exchange and process management

Part 2: Data

Industry Foundation Classes (IFC, ISO 16739)

Industry Foundation Classes (IFC) are the open and neutral data format for <u>open</u>BIM.

- schema for sharing construction and facility management data
- across <u>various applications and software</u> used in the AEC/FM industry domain
- object-oriented (building elements, spaces, properties, shapes, etc.)

http://www.buildingsmart-tech.org/implementation/faq/faq-general-questions#Q3

FIG WORKING WEEK 2017 **BIM FOR SURVEYORS**

Helsinki Finland Sunday 28 May 2017

IFC schema is specified with

EXPRESS EXPRESS-G XML-Schema

IFC Documentation

http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ http://www.buildingsmart-tech.org/ifc/IFC4/final/html/ http://www.buildingsmart-tech.org/ifc/IFC4x1/RC3/html/

XSD Specification:

<xs:element name="IfcProduct" type="ifc:IfcProduct" abstract="true" substitutionGroup="ifc:IfcObject" nillable="true"/> <xs:complexType name="IfcProduct" abstract="true">

<xs:complexContent> <xs:extension base="ifc:IfcObject">

<xs:sequence>

<xs:element name="ObjectPlacement" type="ifc:IfcObjectPlacement" nillable="true" minOccurs="0"/>

<xs:element name="Representation" type="ifc:IfcProductRepresentation" nillable="true" minOccurs="0"/> </xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

- Standard for the Exchange of Product Model Data
- Begin: ISO-10303-21
- Header: Metadata (description,name,schema)
- Data Section: DATA, ENDSEC
- Instances start with # and number, followed by name of class
- \$: optional attributes
- References with # and number
- End: END-ISO-10303-21

ISO-10303-21; HEADER; FILE_DESCRIPTION (('Testfile')); FILE_NAME(('example_file')); FILE_SCHEMA (('example_schema')); ENDSEC; DATA; #1 = POINT (10.0, 5.0, \$); #2 = POINT (10.0, 15.0, \$); #3 = POINT (10.0, 15.0, \$); #4 = TRIANGLE(#1, #2, #3); ENDSEC;

END-ISO-10303-21;

Example for Spatial Aggregation

HelloWall.ifc from BuildingSmart, Fig from: Görne, Hendrik: "Building Information Modeling (BIM) – Standards der BIM-Methode für vermessungstechnische Leistungen", Master Thesis HTW Dresden, 2016

Example for Geometry of a wall

HelloWall.ifc from BuildingSmart, Fig from: Görne, Hendrik: "Building Information Modeling (BIM) – Standards der BIM-Methode für vermessungstechnische Leistungen", Master Thesis HTW Dresden, 2016

Neo

FARO

#350 = IFCTABLE('StationMeasurements', (#358, #359, #360), (#351, #352, #353, #354, #355, #356, #357));

Distance Measures between Faces Polar Measures (Total Station) from Point to Face

Görne, Hendrik: "Building Information Modeling (BIM) – Standards der BIM-Methode für vermessungstechnische Leistungen", Master Thesis HTW Dresden, 2016

Christian Clemen (Germany): "Standards for BIM data exchange and process management"

C Browser ×				Properties			
E / Beispielproj 🔺	OpenGLIFC	Viewer		Element-Eigens	haften IFC-Eigenschaften	FC-Beziehun;	gen
Beispie				Name	Value	Descripti	ion
- <u>w</u> B	XX	\times // \wedge		IfcRelA	ggre		
				- H	Build Beispiel-Stockwerk		
			\checkmark \times	E IfcRelS	pace		
		+//			188 <		
	~		X		N 1stLevel		
	P // /		\times		De Grenze-Boden		
					Re IFCSLAB (#158)		
~	L				Ph PHYSICAL		
					Int EXTERNAL		
lement ×	30				Su 1 Faces		
ente Ebenen				#	188 <		
IfcBuildingStorey A				#	188 <		
IfcSpace				= =	88 <		
IfcWall	계入 5			and the second	N 1stLevel		
IfcOpeningElemer		7			De Grenze-linke Wand		
IfcSlab_Roof					Re IFCWALL (#87)		
> 🖌 IfcSlab_Floor		\sim			Ph PHYSICAL		
~					Int INITEDNIAL		
< >				× •			
				<u></u>			NI

Information Delivery Manual / ISO29484-1

Documentation that describes

- 1. the business process and
- 2. the detailed **business process requirement** for a "data drop" as input/output requirements
- 3. Technical requirements such as data format and used IFC classes

needed to provide at a particular point within a BIM project

Stecking- GordoORKING WEEK 2017 BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Aumanme der lesigelegien Bereiche

Prozesskarte

vame

Dokumentation

Information Delivery Manual / ISO29484-1

FARO

- **Process and Interaction Map**
- Description of Processes and Data
- Information Requirenments buisiness and technical

Technical implementation of communication (MVD)

Die festgelegten Bauteile werden mit einer geeigneten Messtechnologie korrekt

LOD = LOG + LOI

Level of Development = Level of Geometry + Level of Information

Level of Detail = Too CADy, to much related to scale

Hausknecht, K. und Liebich, T. (2016)

LOD = Level of development for BIM objects (not models):

LOD 100: graphically represented, Information can be derived from other sources.

LOD 200: <u>generic</u> object with approximate quantities, size, shape, location, and orientation. Non-graphic information may also be attached.

LOD 300: + Model as a <u>specific</u> object in terms of quantity, size, shape, location, and orientation. Non-graphic information may also be attached

LOD 400: + with <u>detailing</u>, <u>fabrication</u> and <u>installation</u> information.

LOD 500. + field verified representation. <u>As-built</u>

FIGERSTANDSDOKUMENTATION OR KING WEEK 2017 BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

The Specification is <u>not a set of requirements</u> as to what is modeled when or by whom. <u>Rather it is a **language**</u> by which users can define these requirements for their own firms or projects!

BID FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

350 Secondary stair support el brackets, etc.).	ements are modele	d (hangers,	_						
400 All stair elements a installation.	are modeled to supp	port fabrication and		-					
			M	ilestones shown here are examples only ->		SD			D
	Uniformat Level	Omniclass Level	5			D -			
	1 2 2 4 5		2	Delevent Attribute Tables		Date	Natas		Da
	1 2 5 4 5			Relevant Attribute Tables	LOD	IVIEA	Notes	100	IVI
Dort 2	A 10	21- 01 10 00 00 00	Foundations	A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete					
Part 2.	A 10 10	21- 01 10 10 00 00	Standard Foundations	A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete					
Spreadsheet with	A 10 10 ,10	21- 01 10 10 10 00	Wall Foundations	A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete					
classification	A 10 10 ,30	21- 01 10 10 30 00	Column Foundations	A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete					
system	۹۵, 10 ۱۵	21- 01 10 10 90 00	Standard Foundation Supplementary Components						
System,	A 10 20	21- 01 10 20 00 00	Special Foundations	A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete					
milestones, iviodei	A 10 20 ,10	21-01 10 20 10 00	Driven Piles						
	A 10 20 ,15	21-01 10 20 15 00	Bored Piles						ļ
element author	A 10 20 ,20	21-01 10 20 20 00	Calssons Special Foundation Walls						
	A 10 20 ,50		Equidation Anchors						
	A 10 20 ,40		Underninning						
	A 10 20 ,50	21-01 10 20 50 00	Raft Foundations						
	A 10 20 ,00	21-01 10 20 70 00	Pile Caps						
	A 10 20 ,80	21- 01 10 20 80 00	Grade Beams	A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete					
	A 20	21- 01 20 00 00 00	Subgrade Enclosures	A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete					
	A 20 10	21- 01 20 10 00 00	Walls for Subgrade Enclosures	A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete					

Plowman Craven: BIM Survey Specification and Reference Guide

- Relates surveying deliverables to RIBA Stage 1-7
- Focus on Terrestrial Laserscanning for BIM
- LOD for "as-is-survey"

- LOD1 Mass Model LOD2 – Shell and Core Model (standard families) LOD3 – Standard Survey Model (adapted families) LOD4 – Detailed Survey Model (+ installation)
- LOI for "as-is-survey"
 LOI100 Category "standard wall"
 LOI200 + Parametric Dimensions
 LOI300 + detailed type "interior wall"
 LOI400 + visuel inspection und documentation (non intrusiv)
 LOI500 + FM Data (third party)

estandsdokumentieu ORKING WEEK 2017 BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

7 Appendix B – Detailed Modelling Methods and Considerations

This Appendix provides a more detailed description of the modelling techniques used for the primary surveyed building components specified in the LOD or otherwise agreed with the Client. It also contains a description of more detailed aspects of BIM modelling that need to be considered as part of the BIM Survey Specification. Examples are also given for typical parameters which would be included at each LOI.

This section should be used for reference by the Client's BIM Manager or Technical Team in order to agree and understand the precise method used to model the building. It is imperative to agree modelling methods prior to a survey being taken as re-work of the model can incur significant costs and delays.

7.1 Floors/Slab

All floors and slabs will be modelled using the Revit® System Family: Floors. In some instances, or where appropriate, floors may have to be modelled In-Place. The floor will be referenced to the appropriate Level and given an overall thickness from Finished Floor Level (FFL) to Underside of Slab - or to that which was measured or visible at the time of survey. In many instances floor thicknesses cannot be ascertained from a survey due to finishes, etc., therefore a floor will be given a nominal thickness and named as 'undefined'.

OORS AND WINDOWS					LEVEL OF INFORMATION				
	Not Required		LOI 100	LOI 200	LOI 300	LOI 400	LOI 500		
DETAIL	LOD 1	N/A							
LOFI	LOD 2	Structural openings shown only							
LEVE	LOD 3	Modelled using generic families with basic detail							
	LOD 4	Modelled using generic families showing detail such as sills, frames and architraves							

site t	SITE TOPOGRAPHY						LEVEL OF INFORMATION					
	Not Required		Linked AutoCAD	LOI 100	LOI 200	LOI 300	LOI 400	LOI 500				
DETAI	LOD 1	Topography shown as simplified contour Revit [®] surface										
LOFI	LOD 2	As LOD 1, with roads shown as sub-regions										
LEVE	LOD 3	As LOD 2, with all hard surfaces identified, including car parks and pavements										
	LOD 4	As LOD 3, with street furnitur of underground services mod	re, lighting and surface evidence delled in basic form	'								

Comments:

UNDEF	GROUND SEF	LEVEL OF INFORMATION						
	Not Required		LOI 100	LOI 200	LOI 300	LOI 400	LOI 500	
DETAI	LOD 1	N/A						
L OF I	LOD 2	3D CAD underground services and topographic survey as linked AutoCAD DWG						
LEVE	LOD 3	Underground services modelled as intelligent Revit ^e objects						
	LOD 4	N/A						
Comments	Annungantar							

LOD 3

LOD 4

Christian Clemen (Germany): "Standards for BIM data exchange and process management"

Typical Levels of Information

LOI 100	Conceptual Mass
LOI 200	Floor: SURVEY 180mm
LOI 300	Floor: SURVEY STRUCTURAL 180mm

Floor: SURVEY STRUCTURAL 180mm LOI 400 [Carpet]

Floor: SURVEY STRUCTURAL 180mm LOI 500 [75mm Sand/Cement Screed]

- Accuracy classes from DIN18710 ©
- Measured accuracy (cloud) vs. represented accuracy (model)
- Absolute vs. relative accuracy
- Use cases (normal, heritage, metric, imperial)
- LOA for each **UniFormat** Building element type!
- Simple method of validation (A,B,C)

LOA10	User defined
LOA20	5 cm
LOA30	15 mm
LOA40	5 mm
LOA50	1 mm

- 5 cm
- 15 mm
- 5 mm
- 1 mm
- 0

USIBD Level of Accuracy (LOA) Specification Guide

Document C120[™] [Guide] Version 2.0 - 2016

Guide for USIBD Document C220™: Level of Accuracy (LOA) Specification for Building Documentation

SSSSS 12 Ś Measured Accuracy Field of application Standard C Heritage х Absolute 13 If Absolute - des If Relative - desc Dimensional units Relative 14 C Imperial Metric 15 Level of Accuracy (2 σ std dev) 16 17 5cm 15mm 5mm 1mm 0 Level 2 Level 3 CSI UniFormat[™] 2010 leve LOA10 LOA20 LOA30 LOA40 LOA50 18 A SUBSTRUCTURE 19 A10 Foundations 20 х + A20 Subgrade Enclosures 23 х A40 Slabs-on-Grade 25 х + 28 29 **B** SHELL B10 Superstructure 30 х ++ B20 Exterior Vertical Enclosures 34 х 41 B30 Exterior Horizontal Enclosures х 47 + INTERIORS 48 C10 Interior Construction 49 х + C20 Interior Finishes 57 х 63 +

Neo

FARO

FIIG

FIG WORKING WEEK 2017 BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Collaboration –

Standards for BIM information exchange and process management

Part 1: Management Part 2: Data

