FIG Commission 7 and 9 Annual Conference and Meeting 4th – 8th December 2017 - Cartagena Colombia

Integrating geospatial & statistical standards using Fintech (English)

Manohar Velpuri

Disclaimer : The findings, interpretations and conclusions expressed herein this presentation are those of the authors and do not necessarily reflect the view of the organisations, sponsors, its Board of Directors or the governments they represent

Integrating geospatial & statistical standards using Fintech

- Fintech Definition Introduction
- FIG Working group 9.2 & UNGGIM policy framework
- Coastlines and Islands 2030 Agenda Disaster risk reduction
- Cadastre 4.0 and Fintech 4.0
- UNECE meeting report Statistics vs Geospatial data for real estate market study i. Introduction to Statistical and Geospatial Standards and Models
 - ii. Examples of integrating Statistical and Geospatial Standards and Models
 - iii. Challenges and solutions for creating Geospatial Statistical Outputs
 - iv. Future Work relevant to Statistical and Geospatial Standards
- Geospatial architecture centralized vs Ownership on Blockchain
- Framework for universal financial access using blockchain
- Role of Blockchain in Real estate markets current implementations
- Cost saving for a valuable property due to Smart contracts
- Brief report of ISO TC 307
- Existing datasets ISRO, NASA, China Dubai Declaration (Nov 7-9, 2017)
- UNGGIM HLPF Mexican Declaration (Nov 28- Dec 1, 2017)
- Conclusion and Reference

CADASTRE FOR EMERGENCIES AND DISASTERS : Challenges and opportunities for islands and Coastlines

Working Group 9.2 (Sep 2016...)

Valuation and Real estate management through **Fin-tech**

- 1. Does Fin-tech advance the professional practice of valuers and property managers working in most areas of real estate valuation and management;
- 1. Research and publish "best practice use cases of Blockchain" for the benefit of surveyors in different jurisdictions and sectors of the industry. This will benefit the surveying community and improve our services to the wider public;
- 1. Does Fin-tech's third and fourth wave facilitate and generate the exchange of information, knowledge and experience between surveyors for the benefit of the profession, our clients and the wider public in relation to the World Bank's fourth generation technologies on land engagements
- 1. Block-chain's role in publicizing and promoting the work of surveyors to the public, particularly to young people, governments and non-government organizations. Additionally, to enhance the value and perception of surveyors and the services they can deliver, especially in support of the global sustainability agenda and the UN Millennium Development Goals;
- 1. Does Fintech 3.0 and 4.0 lead to better alternative financing and sustainable real estate markets while also enabling better policy framework through reforms.

Scope : Integrating geospatial and statistical standards

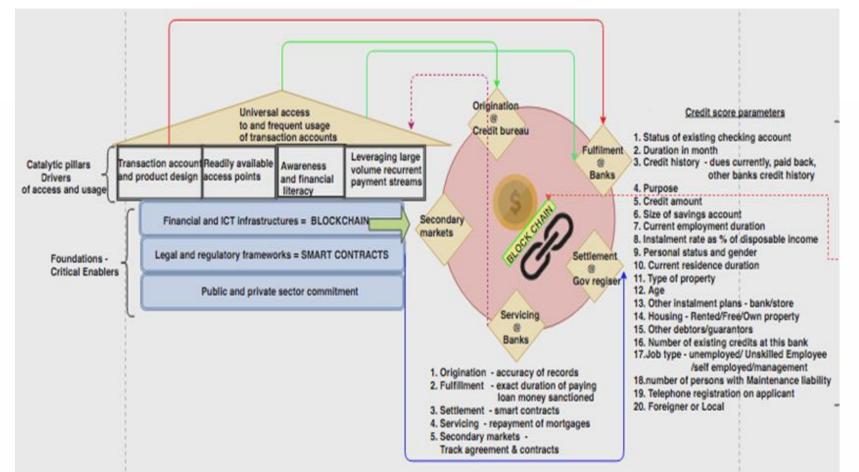
Integrating geospatial & statistical standards using Fintech

CADASTRE FOR EMERGENCIES AND DISASTERS : Challenges and opportunities for islands and

Coastlines

Integrating geospatial & statistical standards using Fintech

7 Dec 2015 00:00 UTC - 6 Dec 2017 15:31 UTC XBT/COP close:38560600.63574 low:1206229.14760 high:38581068.39687


CADASTRE FOR EMERGENCIES AND DISASTERS : Challenges and opportunities for islands and

Coastlines

Framework - Universal financial access @ Blockchain

"Developing and accelerating electronic merchant payments at the broader level can help countries advance financial access and financial inclusion.... Using basic payment or savings accounts can gradually lead to access to and usage of other financial services, such as credit, insurance or pensions. The three foundational enablers are also highly relevant levers for helping to improve the usage and adoption of electronic payments by merchants" (WorldBank, 2016).

GLOBAL DEVELOPMENT POLICY FRAMEWORK

	Global o	levelopment policy f	ramework	
The 2030 agenda for SD	Sendai Framework for Disaster risk reduction 2015-2030	SIDS accelerated modalities of action (SAMAO) pathway	Paris agreement on climate change	Habitat III Urban agenda

UN-GGIM: Global geospatial policy framework

2017-2021 Strategic Framework

	VISION	Po	sitioning geospat	tial information to ad	dress global challen	ges
	MISSION	community of resources are coo	practice, the Comn rdinated, maintain	nd institutional arrange nittee of Experts will en ed, accessible, and able y to address key global	sure that geospatial i to be used effectively	nformation and y and efficiently by
CONTEXT	MANDATED STRATEGIC OBJECTIVES	Provide leadership in setting the agenda for the development of global geospatial information and to promote its use to address key global challenges	Provide a forum for coordination and dialogue with and among Member States and relevant international organizations on enhanced cooperation	Provide a platform for the development of effective strategies to build and strengthen national capacity and capability concerning geospatial information, especially in developing countries	Propose work-plans, frameworks and guidelines to promote common principles, policies, methods, standards and mechanisms for the interoperability and use of geospatial data and services	Make joint decisions and set the direction for the production and use of geospatial information within and across national, regional and global policy frameworks

Shared goal for UNISPACE+50 (61st session of COPUOS, Vienna, Jun 20-21, 2018)::

To build, together with all stakeholders, a comprehensive Space-2030 agenda for the contribution of space activities to the achievement of the SDG, addressing overarching, long-term development concerns, and which is based on the peaceful exploration and uses of outer space.

The integration of statistics and geospatial information including identity data are key considerations in the data flow and knowledge for cities - 17 goals and 169 targets of the Sustainable Development Goals (SDGs).

Coastlines and Islands : Facts and Figures (source : wiki)

	The World Factbook			World Resources Institute	
	<u>#</u>	km		<u>#</u>	km
	The Wo	orld Factbook		World Reso	urces Institute
Country	<u>#</u>	km		<u>#</u>	km
World[Note 2]		1,162,3	306	_	1,634,701
Others[Note 3]		356,0	00		
Canada	1	202,08	0	1	265,523
Norway	2	103,00	0	7	53,199
ndonesia	3	54,720)	4	95,181
Greenland[Note 4]		44,087	7		
Russia	4	<u>37,653[No</u>	<u>te 5]</u>	3	110,310
Philippines	5	36,289)	8	33,900
lapan	6	29,751		12	29,020
Australia	7	25,760)	6	66,530
Jnited States	8	19,924	l I	2	133,312
Antarctica ns in rural areas -	CORACTA SCIENCE	17,968	3	COLOR MONTH IN THE OWNER	Colombian govt, FARC a political mission of the
aty - 2016 Colombia	36	3,208	41	5,875	United Nations compose by observers from memi states of the Community
and the state of the second		P 2		A STATE OF A STATE OF A STATE	Latin American and
FIG Commission	7				- <u>Caribbean States</u> (CELA 1 Universidad de

87% vi

Peace

SDG's - Disaster risk reduction - 25 targets - Goal 1,2,3,4

There are 25 targets related to disaster risk reduction in 10 of the 17 sustainable development goals, establishing the role of disaster risk reduction as a core development strategy.

Goal 1. End poverty in all its forms everywhere

1.5 By 2030, build the resilience of the poor and those in vulnerable situations and reduce their exposure and vulnera climate-related extreme events and other economic, social and environmental shocks and disasters

Goal 2. End hunger, achieve food security and improved nutrition and promote sustainable agriculture

2.4 By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase p and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme we drought, flooding and other disasters and that progressively improve land and soil quality

Goal 3. Ensure healthy lives and promote well-being for all at all ages

3.d Strengthen the capacity of all countries, in particular developing countries, for early warning, risk reduction and management of national and global health risks

Goal 4. Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all

4.7: By 2030, ensure that all learners acquire the knowledge and skills needed to promote sustainable development including, among others, through education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and nonviolence, global citizenship and appreciation of cultural diversity and of culture's contribution to sustainable development

4.a Build and upgrade education facilities that are child, disability and gender sensitive and provide safe, non-violent, inclusive and effective learning environments for all source : http://www.preventionweb.net/drr-framework/sdg/target

4 QUALITY EDUCATION

SDG's - Disaster risk reduction - 25 targets - Goal 1,2,3,4 - Colombia

G(🝸	Tar 🝸	Indic 😇	Indicator Description	1	Ŧ	Series Description 👘	Freque 😇	Source typ 👻	Unit 👻	201(🔻	FN 😤
1	1.5	1.5.1	Number of deaths, missing persons and directly after	fc +		Number of persons affected by o	Annual	Not available	Number		
1	1.5	1.5.1	Number of deaths, missing persons and directly after	fe +		Missing persons due to disaster	Annual	Not available	Number		
1	1.5	1.5.1	Number of deaths, missing persons and directly after	fe +		Number of deaths due to disaste	Annual	Not available	Number		
1	1.5	1.5.2	Direct economic loss attributed to disasters in relation	ti +		Direct economic loss attributed t	Annual	Not available	USD		
1	1.5	1.5.3	Number of countries that adopt and implement na	t +		Number of countries with legisla	Annual	Not available	Number		
3	3.d	3.d.1	International Health Regulations (IHR) capacity and	i si	D	International Health Regulations	Annual	Not available	Index	89	NA, 27
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a SI	D	Proportion of teachers in lower	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a SI	D	Proportion of teachers in lower	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a SI	D	Proportion of teachers in lower	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a SI	D	Proportion of teachers in pre-pri	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a SI	D	Proportion of teachers in pre-pri	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a SI	D	Proportion of teachers in pre-pri	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a SI	D	Proportion of teachers in primar	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a SI	D	Proportion of teachers in primar	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a St	D	Proportion of teachers in primar	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a St	D	Proportion of teachers in upper	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary; (b) prim	a St	D	Proportion of teachers in upper	Annual	Not available	Percent		
4	4.c	4.c.1	Proportion of teachers in: (a) pre-primary: (b) prim	a St	D	Proportion of teachers in upper	Annual	Not available	Percent		

1 NO POVERTY

ſſ¥₩

2 ZERO HUNGER

source : https://unstats.un.org/sdgs/indicators/database/?area=COL

SDG's - Disaster risk reduction - 25 targets - Goal 6,9,11

Goal 6. Ensure availability & sustainable management of water & sanitation for all

6.6: By 2020, protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers and lakes.

Goal 9. Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

9.1 Develop quality, reliable, sustainable & resilient infrastructure, including regional & transborder infrastructure, to economic development & human well-being, with a focus on affordable & equitable access for all.

Target 9.a: Facilitate sustainable and resilient infrastructure development in developing countries through enhanced financean, technological and technical support to African countries, least developed countries, landlocked developing countries and small island development states.

Goal 11. Make cities and human settlements inclusive, safe, resilient and sustainable

11.1: By 2030, ensure access for all to adequate, safe and affordable and basic services and upgrade slums.

11.3: By 2030, enhance inclusive and sustainable urbanization and capacity for participatory, integrated and sustainable human settlement planning and management in all countries.

11.4: Strengthen efforts to protect and safeguard the world's cultural and natural heritage

11.5 By 2030, significantly reduce the number of deaths and the number of people affected and substantially decrease the direct economic losses relative to global gross domestic product caused by disasters, including water-related disasters, with a focus on protecting the poor and people in vulnerable situations

11.b By 2020, substantially increase the number of cities and human settlements adopting and implementing integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to climate change, resilience to disasters, and develop and implement, in line with the Sendai Framework for Disaster Risk Reduction 2015-2030, holistic disaster risk management at all levels

11.c: Support least developed countries, including through financial and technical assistance, in building sustainable and resilient buildings utilizing local materials source : http://www.preventionweb.net/drr-framework/sdg/target

SDG's - Disaster risk reduction - 25 targets - Goal 6,9,11 - Colombia

		E CITIES JNITIES
A		==

GIT	Tar 🝸	Indic 😇	Indicator Description -	T	Series Description	Freque	Source typ 😇	Unit $=$ 20)1(Ŧ	FN 👎
9	9.1	9.1.2	Passenger and freight volumes, by mode of transpo	SD	Freight volume (tonne kilometre	Annual	Other	Tonne kilometres		
9	9.1	9.1.2	Passenger and freight volumes, by mode of transpo	SD	Passenger volume (passenger ki	Annual	Other	Kilometres		
9	9.1	9.1.2	Passenger and freight volumes, by mode of transpo	SD	Freight volume (tonne kilometre	Annual	Other	Tonne kilometres		
9	9.1	9.1.2	Passenger and freight volumes, by mode of transpo	SD	Freight volume, by air transport	Annual	Not available	Metric Tons		
9	9.1	9.1.2	Passenger and freight volumes, by mode of transpo	SD	Freight volume (tonne kilometre	Annual	Not available	Tonne kilometres		
9	9.1	9.1.2	Passenger and freight volumes, by mode of transpo	SD	Mail volume (tonne kilometres),	Annual	Not available	Tonne kilometres		
9	9.1	9.1.2	Passenger and freight volumes, by mode of transpo	SD	Passenger volume, by air transp	Annual	Not available	Number		
9	9.1	9.1.2	Passenger and freight volumes, by mode of transpo	SD	Passenger volume (passenger ki	Annual	Not available	Kilometres		
9	9.a	9.a.1	Total official international support (official developed	SD	Total official flows for infrastruct	Annual	Not available	Constant USD		
11	11.5	11.5.2	Direct economic loss in relation to global GDP, damage to critical infrastructure and number of disruptions to basic services, attributed to disasters	SD	Direct disaster economic loss, average annual loss in relation to global GDP	Annual	Not available	Per 1,000 USD	9.94	E, 27,
11	11.5	11.5.2	Direct economic loss in relation to global GDP, damage to critical infrastructure and number of disruptions to basic services, attributed to disasters	SD	Damage to critical infrastructure, education facilities	Annual	Not available	Number		
			Direct economic loss in relation to global GDP, damage to critical infrastructure and number of disruptions to basic services, attributed to		Damage to critical		Not control to			
11	11.5	11.5.2	disasters	SD	infrastructure. health facilities	Annual	Not available	Number 1		

source : https://unstats.un.org/sdgs/indicators/database/?area=COL

SDG's - Disaster risk reduction - 25 targets - Goal 13,14,15

Goal 13. Take urgent action to combat climate change and its impacts

13.1 Strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all countries

13.2 Integrate climate change measures into national policies, strategies and planning.

13.3 Improve education, awareness-raising and human and institutional capacity on climate change mitigation, adaptation, impact reduction and early warning

13.a Implement the commitment undertaken by developed-country parties to the United Nations Framework Convention on Climate Change to a goal of mobilizing jointly \$100 billion annually by 2020 from all sources to address the needs of developing countries in the context of meaningful mitigation actions and transparency on implementation and fully operationalize the Green Climate Fund through its capitalization as soon as possible.

13.b Promote mechanisms for raising capacity for effective climate change-related planning and management in least developed countries, including focusing on women, youth and local and marginalized communities

14 LIFE BELOW WATER

Goal 14. Conserve and sustainably use the oceans, seas and marine resources for sustainable development

14.2 By 2020, sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, including by strengthening their resilience, and take action for their restoration in order to achieve healthy and productive oceans

Goal 15. Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss

15.1 By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services, in particular forests, wetlands, mountains and drylands, in line with obligations under international agreements.

15.2 By 2020, promote the implementation of sustainable management of all types of forests, halt deforestation, restore degraded forests and substantially increase afforestation and reforestation globally

15.3 By 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought and floods, and striveto achieve a land degradation-neutral world

15.4 By 2030, ensure the conservation of mountain ecosystems, including their biodiversity, in order to enhance their capacity to provide benefits that are essential for 19 sustainable development.

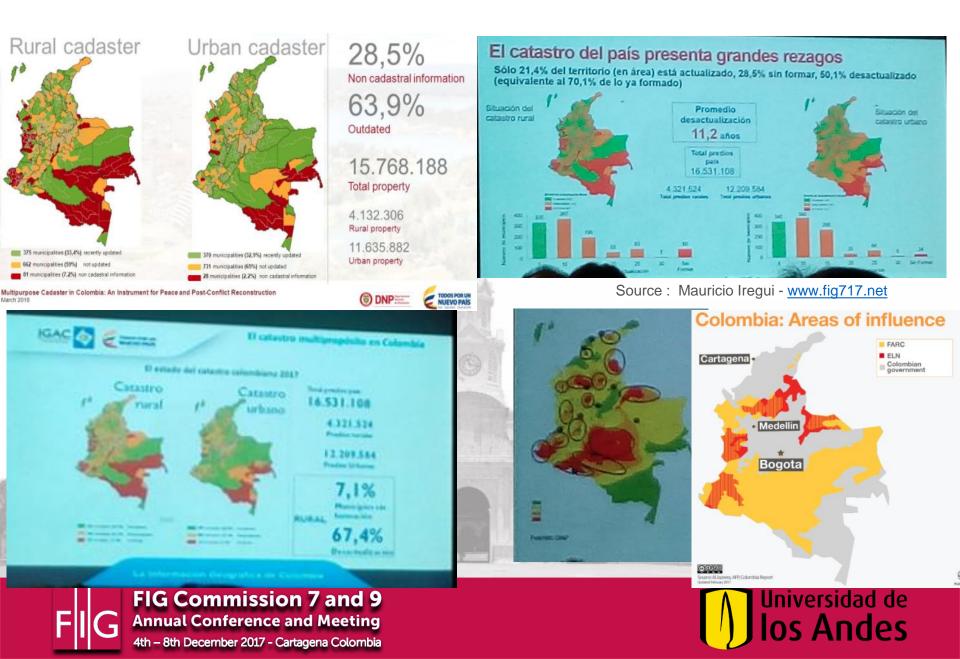
15.9 By 2020, integrate ecosystem and biodiversity values into national and local planning, development processes, poverty reduction strategies and accounts.

source : http://www.preventionweb.net/drr-framework/sdg/target

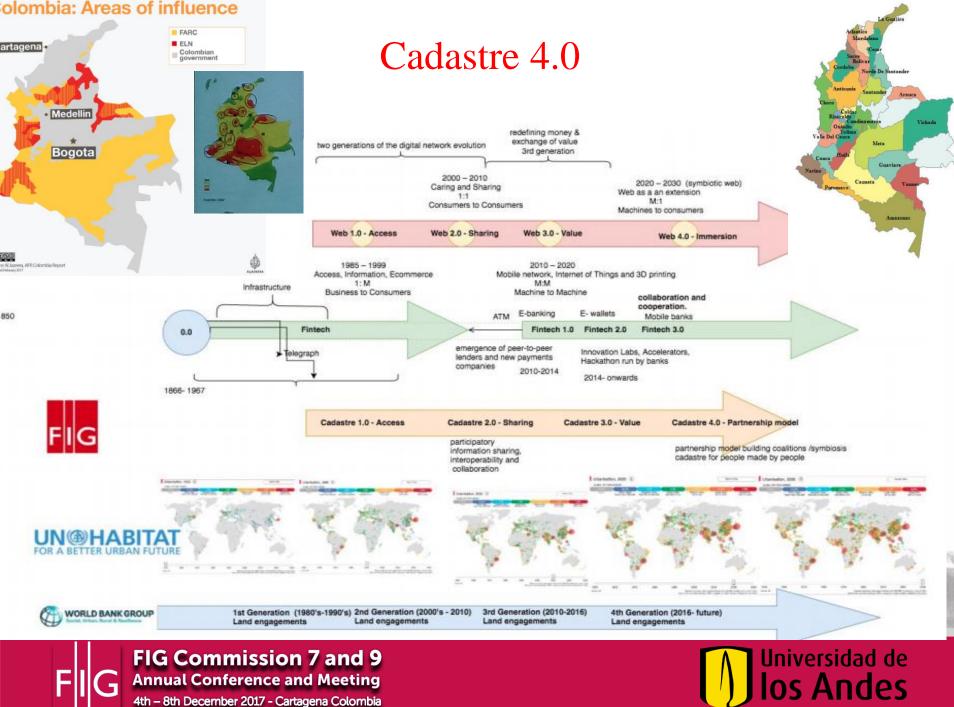
CLIMATE ACTION

SDG's - Disaster risk reduction - 25 targets - Goal 13,14,15 - colombia

G(T	Tar 🝸	Indic \Xi	Indicator Description 💿	T	Series Description	Freque	Source typ 🔻	Unit $\overline{-}$	201(=	FN \Xi
14	14.5	14.5.1	Coverage of protected areas in relation to marine a	SD	Coverage of protected areas in r	Annual	Not available	Percent	2.06	NA, 27,
15	15.1	15.1.1	Forest area as a proportion of total land area	SD	Forest area as a proportion of to	Annual	Not available	Percent		
15	15.1	15.1.2	Proportion of important sites for terrestrial and free	SD	Proportion of important sites for	Annual	Not available	Percent	33.61	C, 27, 1
15	15.1	15.1.2	Proportion of important sites for terrestrial and free	SD	Proportion of important sites for	Annual	Not available	Percent	33.61	C, 27, 1
15	15.1	15.1.2	Proportion of important sites for terrestrial and free	SD	Proportion of important sites for	Annual	Not available	Percent	33.61	C, 27, 1
15	15.1	15.1.2	Proportion of important sites for terrestrial and free	SD	Proportion of important sites for	Annual	Not available	Percent	38.6	C, 27, 1
15	15.1	15.1.2	Proportion of important sites for terrestrial and free	SD	Proportion of important sites for	Annual	Not available	Percent	38.6	C, 27, 1
15	15.1	15.1.2	Proportion of important sites for terrestrial and free	SD	Proportion of important sites for	Annual	Not available	Percent	38.6	C, 27, 1
15	15.4	15.4.1	Coverage by protected areas of important sites for	SD	Coverage by protected areas of	Annual	Not available	Percent	40.1	C, 27, 1
15	15.4	15.4.1	Coverage by protected areas of important sites for	SD	Coverage by protected areas of	Annual	Not available	Percent	40.1	C, 27, 1
15	15.4	15.4.1	Coverage by protected areas of important sites for	SD	Coverage by protected areas of	Annual	Not available	Percent	40.1	C, 27, 1
15	15.4	15.4.2	Mountain Green Cover Index	SD	Mountain Green Cover Index	Annual	Not available	Percent		



source : https://unstats.un.org/sdgs/indicators/database/?area=COL



Cadastre - current state vs pilots

olombia: Areas of influence

Working Group 9.2 - Jul-Aug 2017

INTERVENTION:

7th session of UN Economic and Social council, Dave Lovell, chair of the UNGGIM- geo spatial societies made the following statement -

"GGIM Geospatial Societies thanks the standards community for their vitally important work in developing standards and fully supports the use of existing international standards applicable to the creation, management and use of geospatial information, infrastructures and delivery arrangements. GGIM Geospatial Societies would like to highlight the importance of accelerating the process of developing new international standards given the rapid development of new technologies applicable to the achievement of the SDGs. In this regard we wish to draw attention to the importance of the work of ISO/TC 307 dealing with Blockchain and Electronic Distributed Ledger Technologies. A technology which has been hailed by custodians as being the future of the real estate management industry with potential to streamline processes such as land and property registration, valuation of property and many more digital actions."

source : http://ggim.un.org/meetings/GGIM-committee/7th-session/

United Nations Headquarters, New York 31 JULY - 4 AUGUST 2017

EO4SDGs and WGGI (Working Group on. Geospatial Information)

- CEOS
- ESA
- JAXA
- NASA
- INEGI
- GPSDD
- UN-GGIM Globeland 30

http://www.globallandcover.com/GLC30Download/index.aspx

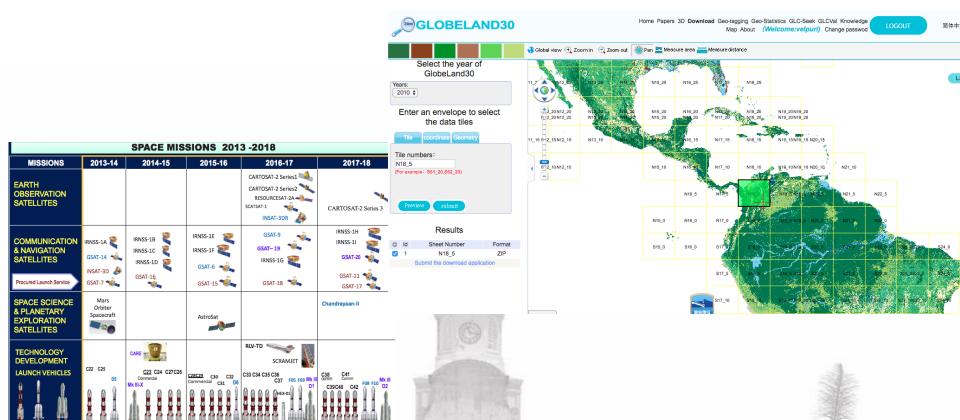
National Land Use / Land Cover mapping on 1:50,000 scale using temporal LISS III Data: Third Cycle Under NR-CENSUS program, the third cycle of mapping of Land Use Land Cover at 23m resolution, using multi-temporal LISSIII satellite data, is in progress. Out of 706 grids of 100km X 100km dimension at the national level, mapping is progressing in 80 grids *Source : ISRO Annual report 2016-2017*

Disaster risk reduction indicators in measuring the 2030 Agenda for Sustainable Development

- · IAEG-SDGs recognizes the OIEWG. Identifies UNISDR as custodian agency, December 2015
- UN Statistical Commission, 48th Session, March 2017: endorsed Report of the IAEG-SDGs | Note by the Secretary-General - E/CN.3/2017/2* proposing the recommended indicators of the OIEWG

• 3 SDGs:

- · Goal L End poverty in all its forms everywhere
- · Goal 11. Make cities and human settlements inclusive, safe, resilient and sustainable.
- · Goal 13. Take urgent action to combat climate change and its impacts
- 4 SDG Targets
- 11 SDG indicators


https://westats.un.org/west/statcom/48th-service/documents/2017-2-0416-505in-Laiff

GLC30 (China) & ISRO - India

National Land Use / Land Cover mapping on 1:50,000 scale using temporal LISS III Data: Third Cycle Under NR-CENSUS program, the third cycle of mapping of Land Use Land Cover at 23m resolution, using multi-temporal LISSIII satellite data, is in progress.

Out of 706 grids of 100km X 100km dimension at the national level, mapping is progressing in 80 grids Source : ISRO Annual report 2016-2017

UNECE workshop - Nov 2017

https://www.unece.org/index.php?id=45404

Details are available published in the aforesaid website

- Workshop on Integrating Geospatial and Statistical Standards 6 - 8 November 2017

AND EVENTS / MODERN				
AND EVENTS / MODERN	ISATION OF OFFICIAL STATISTICS	Meetings & Eve		INTEGRATING GEOSPATIAI
Meetings &	Events			
PROGRAMME:	All		\$	
AREA OF ACTIVITY:	All		\$	
TYPE OF MEETING:	All		*	
YEAR:	All \$ Go			
Workshop on In	tegrating Geospatial a	nd Statistica	l Standar	ds
	PROGRAMME: AREA OF ACTIVITY: TYPE OF MEETING: YEAR:	AREA OF ACTIVITY: All TYPE OF MEETING: All YEAR: All \$ Go	PROGRAMME: All AREA OF ACTIVITY: All TYPE OF MEETING: All YEAR: All ‡	PROGRAMME: All AREA OF ACTIVITY: All TYPE OF MEETING: All

Examples of Integrating Statistical and Geospatial Standards and Models

- **UNECA Strategic framework : Integration of statistical & geospatial information in** Africa
- **European Commission Integration of INSPIRE & SDMX data infrastructures**
- Mexico integrating geographic and statistical information
- Germany Integrating GSGF and GSBPM
- Australia Location information in statistical modernisation transformation
- Finland Towards connecting geospatial information and statistical standards in statistical production (2 cases)
- Italy Reusing WebGIS application templates applied to the integration of statistical and geospatial information
- Poland Harmonization of statistical and geodetic divisions in the context of 10 level model, to develop a common framework as a standard of geospatial data production Mongolia - Integrating satellite imagery and geo-spatial data with administrative
- registration to produce official statistics Switzerland - The collaborative approach between the Federal Statistical Office and the Federal Office of Topography for maintaining a geocoded building and dwelling register used as a base for the production of geostatistical data

Source : UNECE summary report of workshop on integrating statistics and geospatial standards and models

Examples of challenges in Geospatial statistical outputs

Canada - Integrating socio-economic & environmental statistics with geo-spatial information

Poland – Investigation of linked open data technologies for purposes of publishing georeferenced statistical data.

Japan – World Grid Square Statistics and their application to data analytics.

Portugal – Location analytics in administrative data to produce House Price Statistics United States – Innovative effort to transform and expand dissemination of Census Bureau content to improve service to internal and external customers

Finland – OCG Table Joining Service standard revision

Institute for Employment Research - Enabling spatial research using German administrative data – A grid-cell approach.

Source : UNECE summary report of workshop on integrating statistics and geospatial standards and models

Challenges ... Opportunities

Concepts - agreement on conceptual issues - reflected in the standards.

Technology can bring conceptual models together.

Standards – M2M exchange involves, standards are important. Geospatial dimension is missing in SDMX (require discussion)

Data - Integration - ensure combining the correct values, persistent identifiers

Culture - build understanding – statistical & geospatial communities, people in standards governance & technical people.

Communication - clear to find information on the standards, how they relate to each other and how to begin using them.

Management – raise the importance of this work with the senior management, to build high level support. Census 2020 and the SDGs are a key driver, so benefits can be linked to them.

Timeliness – The standards development process is not necessarily a fast process.

Working method – the communities should identify concrete projects and use cases, worked in an iterative or agile way. - show the value of the work.

Source : UNECE summary report of workshop on integrating statistics and geospatial standards and models

Proposal for Future work..

A pitch statement to present to senior managers and leaders to gain buy-in and funding

A beginner's guide to using standards from both communities.

Both communities to develop communication materials that simply describe the interrelationships between their frameworks, models and standards.

Pilot to determine options for persistent ids to link aggregate statistical outputs to standard geographies.

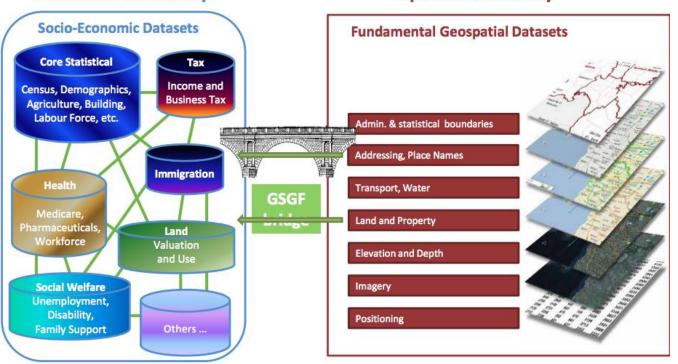
Look for opportunities to work on semantic interoperability issues (for example, ontology for addresses and buildings).

Improve the discoverability of geospatial tools that are based on standards.

Guidance on how to store geospatial objects references/links in existing statistical databases

Map the data exchange process between statistical and geospatial organisations

Examine comparative use cases for application of traditional geography and emerging grid technologies, particularly for dissemination of statistics.


Examine pathways and interest within Statistical Community to move to formal ISO Standards for models and frameworks in addition to existing ones (e.g. ISO/TC 154). *Source : UNECE summary report of workshop on integrating statistics and geospatial standards and models*

Proposal for Future work..

Bridging between two communities

Spatial Community

Source : UNECE summary report of workshop on integrating statistics and geospatial standards and models

Martin Brady Co-Chair UN Expert Group for the Integration of Statistical and Geospatial Information

FIG Commission 7 and 9 Annual Conference and Meeting 4th – 8th December 2017 - Cartagena Colombia

Statistical Community

UNGGIM - 5th High level political forum

- <u>http://ggim.un.org/meetings/2017-Mexico</u>

- Mexican declaration

A Federated System for the SDGs Is Emerging Creating a System of Systems

th High Level Forum

FIG Commission 7 and 9 Annual Conference and Meeting

4th - 8th December 2017 - Cartagena Colombia

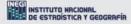
The Sustainable Development Goals Report 2017

"Implementation has begun, but the clock is ticking. This report shows that the rate of progress in many areas is far slower than needed to meet the targets by 2030"

"This report provides a snapshot of our efforts to date. It stresses that high-level political leadership and new partnerships will be essential for sustaining momentum. It also underscores the need for reliable, timely, accessible and disaggregated data to measure progress, inform decision-making and ensure that everyone is counted"

GE@SPATIAL

The Sustainable Development Goals Report 2017


5th High Level Forum on United Nations

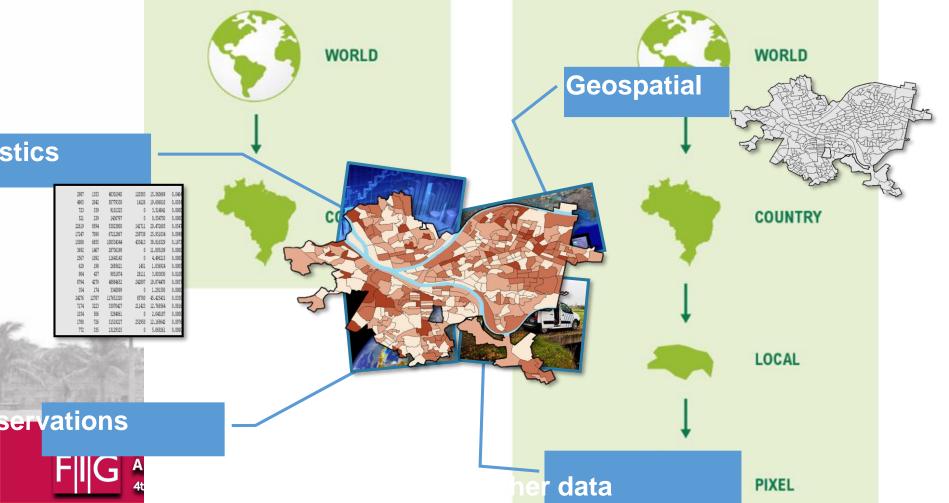
Global Geospatial Information Management

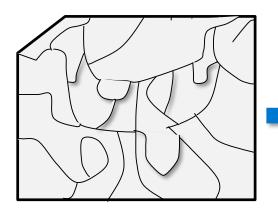
Implementing the Sustainable Development Goals: The Role of Geospatial Technology and Innovation

Sheraton Maria Isabel Hotel Mexico City, Mexico 28-30 November 2017

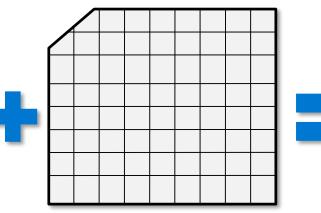
ISO TC 307 - II plenary

- 8 more countries as participating members (Brazil, Croatia, India, Ireland, Jamaica, Portugal, Sweden, and Switzerland) FIG is one of the 5 Liaison organisations. TC 307 is a liaison to 15 other standardization committees, and 13 other standardization committees are liaison to TC 307. There was a total of ~137 delegates at this second meeting of TC 307, up from ~89 at the first meeting.
- WG1 (Working Group 1) on Terminology WG1 will be renamed to "Foundations" as 2 (NWIPs) from SG1 on "Reference architecture, Taxonomy and Ontology"
- NWIP ("Blockchain and distributed ledger technologies Reference architecture") (US) as the Project Leader.China,Korea and France) volunteered too.
- NWIP ("Blockchain and distributed ledger technologies Taxonomy and Ontology) -China as the Project leader, France volunteered to participate.





2030 Agenda: Integration of Information Systems Disaggregation by geographic location


Statistics vs Geospatial data for Property markets

Integration and disaggregation by geographic location

Administrative areas

Gridded datasets

Lowest level/small area geography differs greatly from country to country

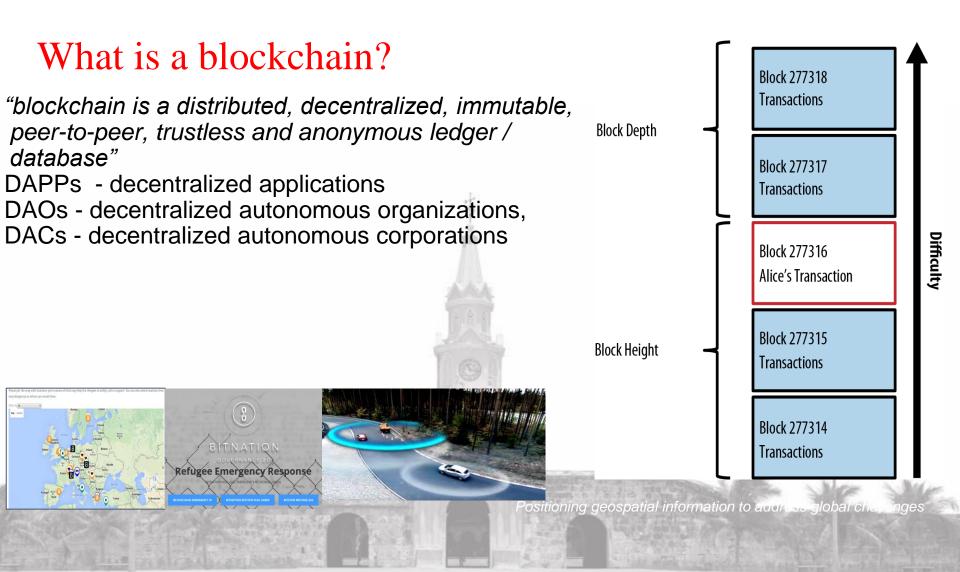
N-GGIM

Gridded data is often the only geospatial solution available to achieve uniformity and integration on a global scale

Geospatial base layers

Combined base layer information (i.e. small area geography and imagery) is useful to validate human settlement patterns and geographical features

United Nations Secretariat Global Geospatial Information Management


Existing Software

- spatial DB
 - PostGIS
 - Oracle Spatial
 - MS SQL spatial
 - ArcSDE
- middleware
 - GeoServer
 - <u>MapServer</u>
 - ArcGis Server
- GeoDjango
- ORG / GDAL
- Python
 - bindings to most geo systems
- Open Geospatial Consortium
 - OGC standards / services

Need for Distributed Ledger

- privacy
 - sensitive geolocation data from mobile to centralized servers Ο
- autonomy
 - control of own data 0
- innovation
 - big monopolies on e.g. geospatial data / land owner registry prevent better solutions
- economy
 - provide better / cheaper solutions
- land ownership
 - proof, cheaper transfer, easier acquisition 0 http://awesomemap.tools/

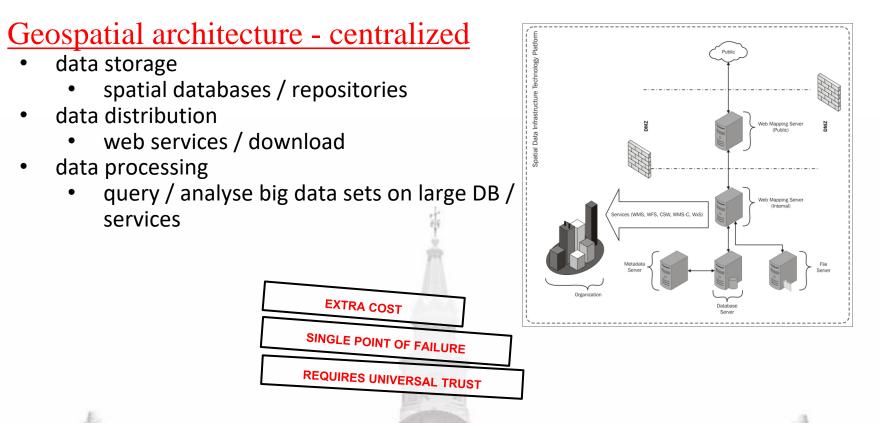
FIG Commission 7 and 9 **Annual Conference and Meeting** 4th – 8th December 2017 - Cartagena Colombia

All nodes are equal and have a full copy of the blockchain

- ~ each 10 min a new block of transactions is added to the chain
- Anyone can install the software and become a node in the network
- Anonymous and encrypte

Positioning geospatial information to address global challenges

Property parcel on blockchain


- A parcel / cadastre is a geometry
- geometry as WKT: POLYGON ((50 150, 100 150, 100 100, 50 100, 50 150)), PROJCS["ETRS89 / UTM zone 33N", ...
- Unique hash of the geometry entered along with transaction: a2ea8a034f1dec198f74404e619c80e9

ositioning geospatial information to address global challenges. Positioning geospatial information to address global challenge

Transfer of land ownership (cadastre / parcel represented by a geometry) Need for proof of ownership

Positioning geospatial information to address global challenges

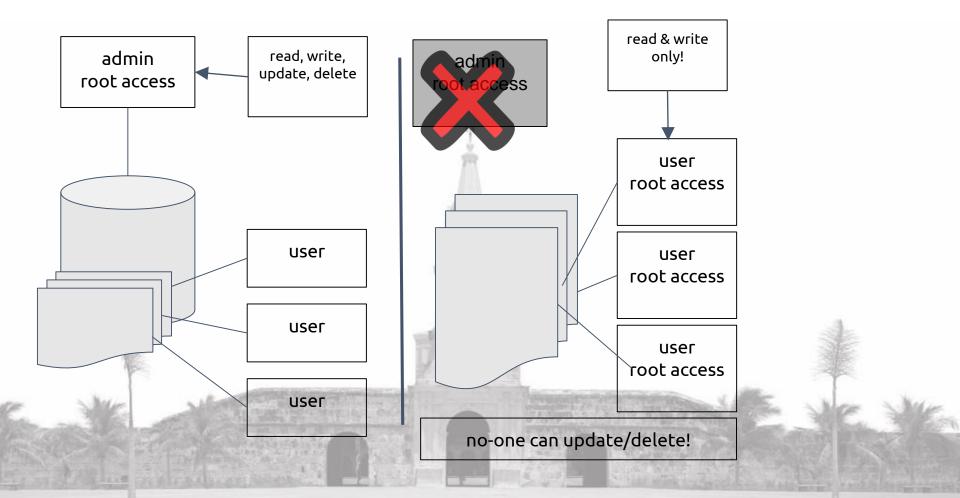
Blockchain Existing Platforms

- <u>Ethereum</u>
- BigchainDB
- <u>IPFS</u>

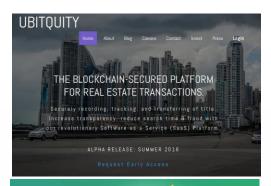
IPFS is The Permanent Web A new peer-to-peer hypermedia protocol

BIGCHAINDB

Meet BigchainDB. The scalable blockchain database.


This is BigchainDB

1 million writes/s, petabytes of capacity and rich permissioning to power both open and private blockchain networks.


Architecture ::: Regular vs Blockchain

Colombiatowards Blockchain

Republic of Georgia to Develop Blockchain Land Registry

Stan Higgins | Published on April 22, 2016 at 16:44 BST

Bitcoin mining company BitFury has inked a deal with the Georgian government to develop a system for registering land titles using the blockchain.

BitFury will help develop the platform for the National Agency of Public Registry (NAPR), an office of the Georgian Ministry of Justice, Economist Hernando de Soto will assist in the development of the platform. Today de Soto is set to give a lecture on related issues during an event in Georgia's capital, Tbillisi.

COLOMBIA 4.0 REVEALS EXPECTATIONS OF THE COLOMBIAN GOVERNMENT IN BLOCKCHAIN DEVELOPMENT

Posted by Diana Aguilar | Sep 29, 2017 | Events | 0 . | * * * *

3. BITINKA/INKAPAY

COLOMBIA | 4 & 5 DE DICIEMBRE

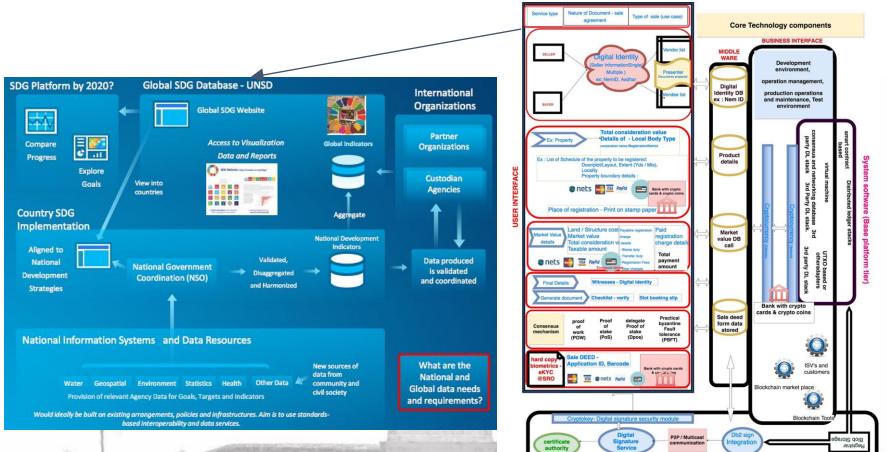
SUR

SurBTC is a technology company that develops and operates services using bitcoin technology in Chile and **Colombia**. The bitcoin exchange recently raised \$300K in seed funding, adding to the \$100K the company already raised through CORFO, a business innovation incubator operated by the Chilean government.

FIG Commission 7 and 9

Annual Conference and Meeting

4th - 8th December 2017 - Cartagena Colombia


Founded in 2013, Bitinka is a platform that facilitates bitcoin purchasing and selling across Latin America. Bitinka currently operates in Argentina, Bolivia, Brazil, Chile, Colombia, Spain, Peru, Venezuela, and the United States, and offers bitcoin trading in native currencies. The

SatoshiTango

Founded in 2014, SatoshiTango is an online platform that enables its users to buy and sell bitcoins. Users have the ability to pay through an international wire transfer or with local means of payment in Brazil, Chile, **Colombia**, Costa Rica, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, and Peru. With SatoshiTango, users can also pay any bill in Argentina with bitcoin.

Positioning geospatial information to address global challenges

SDG platform 2020 and Distributed ledger Technology

programmable contract

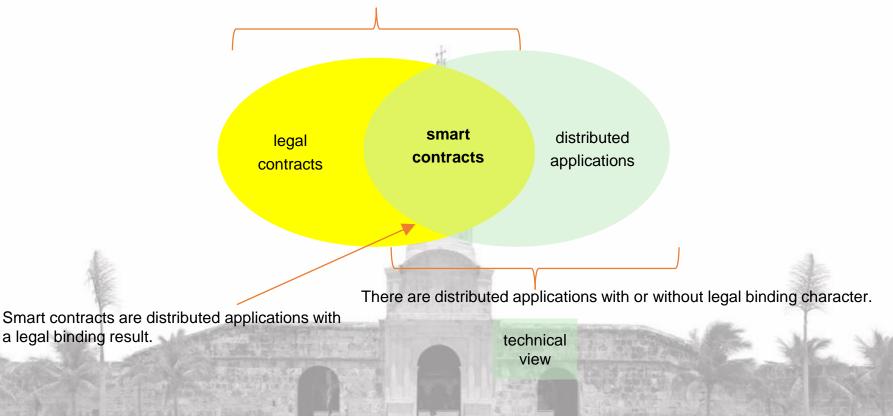
SECURITY INTERFACE

Universidad de

los Andes

LOGICAL VIEW - REFERENCE ARCHITECTURE

The Distribution and Integration of the Statistical datasets and Spatial Datasets are important to the formation of SDG platform.


National Mapping agencies must be sharing the data in a Distributed form - thinking "beyond Silos"

Perspectives on Smart Contracts

legal view

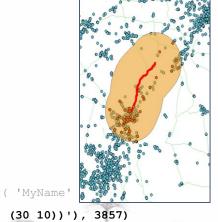
There are legal and contractual activities which can be automated or which cannot/should not.

Source : ISO TC307 - SG05

Spatial database and Query

CREATE TABLE staging.mytable (
 id serial primary key
 , name char(10) NOT NULL
 , geom1 geometry(multipoint,3857)
 , geom2 geometry(multilinestring,3857)
 , geom3 geometry(multipolygon,3857)

);


As h

, geom4 geography(point,4326)

NASA launches 1st satellite 'made in Colombia'

written by Philipp Zwehl January 10, 2014

SELECT 123 as id,
ST_Union(ST_Buffer(geom, 1609*20)) as _geom
FROM ch01.highways
WHERE name = 'US Route 1 AND state = 'MD'

ON ST_DWithin(r.geom, h.geom, 1609*20)

SELECT distinct r.id as rid, r.geom as rgeom FROM ch01.restaurants As r

INNER JOIN ch01.highways

```
WHERE r.franchise = 'KFC'
AND h.name = 'US Route 1'
AND h.state = 'MD';
```

INSERT INTO staging.mytable (name, geom1, geom2, geom3, geom4) VALUES ('MyName'

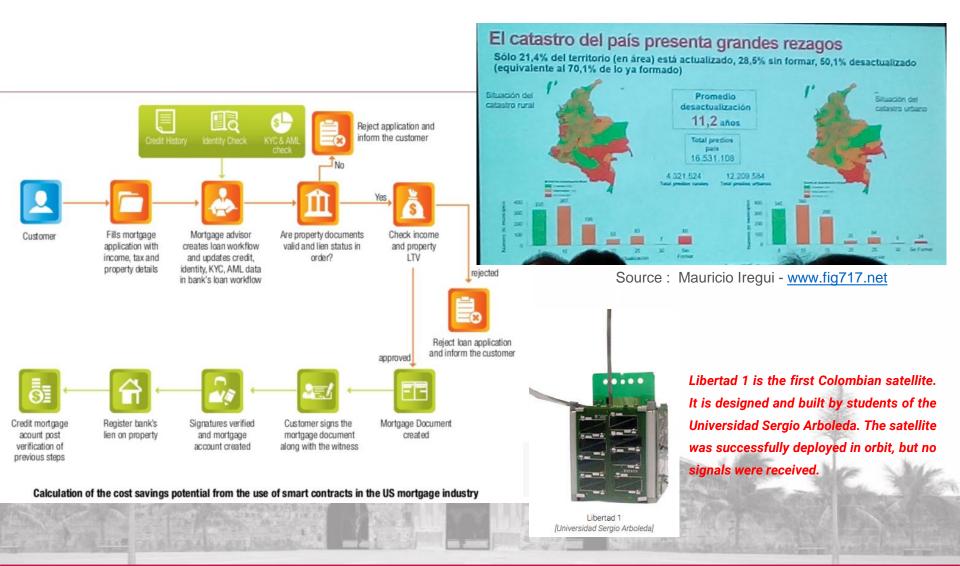
, ST SetSRID (ST GeomFromText ('MULTIPOINT ((10 40), (40 30), (20 20), (30 10))'), 3857)

, ST_SetSRID(ST_GeomFromText('MULTILINESTRING ((10 10, 20 20, 10 40),(40 40, 30 30, 40 20, 30 10))'), 3857)

, ST_SetSRID(ST_GeomFromText('MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)), ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35), (30 20, 20 15, 20 25, 30 20)))'), 3857)

, ST SetSRID(ST GeogFromText('POINT(10 56)'), 4326)

Cryptography - Secure Property


- public key: 1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL
- private key: 1e99423A4ed27608A15A2616A2B0e9e52ced330Ac530edcc32c8ffc6A526Aedd
- only the one with the private key has the control of a resource. A private key can be converted into a public key, but a private key cannot be converted back into a private key because the math only as one way.

Cost saving for a valuable property due to Smart contracts

Conclusion and further research

- Location is seen as the fundamental element of single logical geographical view of the *Real estate Market study*
- Spatial information is crucial to derive patterns not readily apparent to the observer by using Geospatial Information System and Technology (GIST).
- Geodesic grids of discrete cells to register land ownership using secure unique identifier on a blockchain It allows to create for more than a passive registry of entries or transactions..

Technology Convergence and Sharing Economy in Space

• A space-based, shared infrastructure connecting physical, digital and biological spheres for the 4th industrial revolution on a truly global scale could be possible by innovation through blockchain on Earth observatory operations.

standardized valuation of space resources - New Real estate markets?

• Common space currency and valuation methods and a methodology is developed to value space resources and the legal framework exists to recognize a claim.

Space resources (New Real estate market) basis for financing the development and also aid in terrestrial resource (Existing Real estate market) development for financing development of the resource itself.

References

- Chu Ishida, (2017) "Space-based Earth Observation Applications for Resilient Cities", Kunming Forum on UN GGIM Cities of the Future: Smart, Resilient and Sustainable
- Giacomo Brambilla, Michele Amoretti, and Francesco Zanichelli. (2016) "Using Blockchain for Peer-to-Peer Proof-of-Location"
- Greg scott (2017), "Visioning an Integrative Data Ecosystem for the Future", Kunming Forum on UN-GGIM Cities of the Future: Smart, Resilient and Sustainable
- Manohar Velpuri, (2016) " Cadastre 4.0 as a paradigm towards a Fin-tech enabled Real estate management" FIG commission 7 annual meeting, Coimbra
- Manohar Velpuri, Anusha Pidugu, Maringanti Chetan, Aman Sharma Madhu. (2016) "Developing Sustainable Financing to Encourage Private Investment through Block Chain and Crowd Funding in Real Estate", High-Level Joint FIG / World Bank Conference Sustainable Real Estate Markets Policy Framework and Necessary Reforms
- Manohar Velpuri, Anusha Pidugu, Jyothsna Velpuri, Surya Bhamidipati, Madhu Aman Sharma, Chetan Maringanti (2017) "Enabling Formalising Of Informal Markets Through Block chain For Unregistered Real estate", Responsible land governance : Towards an evidence based approach Annual world bank conference on Land and Poverty.
- Manohar Velpuri, Madhu Aman Sharma, Maringanti Chetan, Anusha Pidugu and Jyothsna Velpuri (2017) "Improving Access to Credit in Property Markets using Blockchain", FIG working week, Helsinki
- Manohar Velpuri, India, Daniel Steudler, Switzerland: (2009) "Role of Land Administration in Sustainable Development Country Case Studies of India and Switzerland" FIG working week 2009.
- Rolando Ocampo (2017), "Geospatial Information and the SDGs in Mexico: institutional perspectives on urban resilience", Kunming.
- UFA2020 Overview: Universal Financial Access by 2020
- http://www.worldbank.org/en/topic/financialinclusion/brief/achieving-universal-financial-access-by
- World Bank. 2016. "Innovation in electronic payment adoption : the case of small retailers." Washington, D.C.: World Bank Group.
- Coastal and Marine Ecosystems Marine Jurisdictions: Coastline length". World Resources Institute. Archived from the original on 2012-04-19. Retrieved 2012-03-18.
- CIA World Factbook: Coastline

Disclaimer : The findings, interpretations and conclusions expressed herein this presentation are those of the authors and do not necessarily reflect the view of the organisations, sponsors, its Board of Directors or the governments they represent

Dr Manohar Velpuri Chair of Working group 9.2 Vice chair , Commission 9 FIG Office Kalvebod Brygge 31-33 DK-1780 Copenhagen V 1)manohar.velpuri@gmail.com

Anusha Pidugu Director, Absolutum consultancy Pvt Ltd USA Email: anusha.chandrika@gmail.com

Contact

Steven Nystrom Chair of Commission 9 Commission 9 FIG Office Kalvebod Brygge 31-33 DK-1780 Copenhagen V

Dr Chetan Mariganti, FRM Credit Suisse, Zurich, Switzerland Email: chetan.maringanti@gmail.com

Dr Madhu Aman Sharma Director, CEO, K2A Management incorporated 331, Elmonwood drive - #4-11Canada Email: madhu.sharma@k2amanagement.com Chin Yee Hoong MIT Fintech specialist and Geography Enthusiast from University of London Director - Absolutum Soleil, Singapore

Working Group 9.2

- SG2 (Study Group 2) on "Use Cases" showed only limited results, extended to the III meeting of TC 307 (in about six months).
- A new WG2 on "Security, privacy and identity" on the following Technical Reports: "Overview of privacy and PII protection" this will be led byUK, "Security risks and vulnerabilities" this will be led by Japan "Overview of identity" N189 this will be led by UK (subject to ballot approvals)
- A new WG3 on "Smart contracts and their applications" (subject to a ballot) taking over from the previous SG4 on "Smart contracts". to begin "Overview of and interactions between Smart Contracts in blockchain and distributed ledger technology systems". NWIP ballot for a Technical Specification on "Legally binding smart contracts". Australia as the Project Leader. If successful, a new WG (WG3) called "Smart contracts and their applications" and Germany as Convenor.
- A new SG6 on "Governance of blockchain and distributed ledger technology systems" Denmark.
- A new SG7 on "Interoperability of blockchain and distributed ledger technology systems" Canada as Convenor

III meeting- in London, May 14-18, 2018. IV meeting- May 2019 and V meeting : November 2019. The exact dates and locations of the fourth and fifth meetings will be decided within 4 weeks.

