Geographic Information Systems (GIS) a tool for Transportation Infrastructure Planning in Ghana

> A case study to the Dept. of Feeder Roads

> > By Stephen Yao Fiatornu GEO-TECH SYSTEMS LTD.,

Table of Contents

- 1.0 Introduction
- 2.0 A case study to Dept. of Feeder Roads (DFR)
- 3.0 Purpose of the Project
- 4.0 Methodology (Survey)
- 5.0 The Way Forward
- 6.0 Conclusion

1.0

2.0

Introduction

Many development projects have serious dependence on transport network. Authentic information on the transport infrastructure is fundamental requirement for many decision making process; therefore information is required to be reliable, updated, relevant, easily accessible and affordable.

This demand for information requires new approaches in which data related to transportation network should be identified, collected, stored, retrieved, managed, analyzed, communicated and presented. The road transport related data in particular involves activities like traffic counting, sign inventories, accident investigation, recording of construction and maintenance projects and funding, right of way surveys, bridge inventories, pavement condition surveys, geometry design inventories, and other data collection and maintenance activities.

1.1 Initial problems faced without GIS

The database that existed before did not allow the user

- 1/ to manipulate, access and query the database other than in a very limited way
- 2/ is limited to textual queries only
- 3/ cannot select and view attribute data with respect to spatial and topological relationship
- 4/ cannot access related data such as land use, population, and the road network characteristics of the area in the crossing vicinity.

A case study to DFR

- Road network in Ghana is more than 50,000km of road length
- The planning and management of such a huge network in the country has been primarily done at three levels
- About 13,367km of Trunk Roads
- About 4,029km of Urban Roads

• And about 32,600km of Feeder Roads

ROAD SYSTEM OF	' GHANA
TRUNK ROADS	Length (Km)
Rigid Pavement	38
Asphalt Surfaced	1,566
Bituninous Surfaced	4,733
Gravel	6.357
Missing Links	
Total	13,367
URB AN ROADS	Length (Km)
Asphalt Surfaced	427
Bituninous Surfaced	1,496
Gravel	2,106
Total	4,029
FEEDER ROADS	Length (Km)
Gravel	32,600
Total	32,600
TOTAL LENCTH OF NETWORK	49.996
TOTAL IMPOSITOR VEHICORY	151556

70			C	0	1				1.0	1			M	94	0		a	-	- 1	9.1	U	Y
-	6.0 LO						1		1													
DR	UNAGE	STRUCTURE	WINTON	V & CONDITIO	N SURVEY	CUL	ALKI	5							_	_					_	-
R1	GION	NORTHERN I	ECION.			ROA	D NA	ME	NAS	LL KI	ARIG	U-MEMO	MA				_				_	-
Dis	TRICT:	WIST MAMP	RUSI			ROA	D CO	DEI	1				1.01	_	_	_	_	_		_	_	-
CL.	LITERT	CHAINAGE	CULV.	31225-0-05-0	LENGTH	-	25/0	STRUC	TURS	TYPE	1			_	_	0	050	17100	ING RATE	NO	-	-
	NO.	0.0	TYPE	with a Web	0.0		DAL.	T	6	UTL	T	INLET	PROTEC.		DO.ET		BAR	REL	ONTR.	0		
	_		_			Hat.	16.76	AP	HW	4.87	AP	DRAIN	TORKS	HW	BM	AP	STR	57. T	BURDEN	Mar	1/10	1.A
1	01	0+963	BC.	12003(1000	10.8	X	X	X	X	X	X	2	-	2	4	2	2	1	1	2	3	Ľ
-	97	0+982	BC.	70035800	10.8	X	X	X	X	X	X	1		1	1	1	1	1	1	1	1	H
-	11	1+140	BC .	100636300	1	X	X	A	X	X	X	1	-	1	1	1	1	1	1	1	1	H
-	12	1=616	BC	2500X2500	11.2	x	x	X	X	X	X	1		1	1	2	1	1	4	1	2	H
	21	2+180	BC.	100000500	7	X	X	X	X	X	X	2	-	1	3	1	3	3	1	1	-2	1
	41	4+610	BC .	100030500	7	X	X	X	X	X	X	1		1	1	1	1	1	1	- 3	1	1
	42	3+950	CP	750	11	X	X	X	X	X	X	2	-		4	4	1	1	4	4	4	Ŀ
	31	2+260	CP	750	11	X	X	X	X	X	X	2	_	2	4	4	1	1	4	4	1	Ŀ
1	3.2	2-882	CP	150	11	X	x	X	X	X	X	2		2	4	-4	1	1	- 4	4	1	
	33.	14	BC.	7003(700	10	X	X	11	X	X	1.1	2		2	3.	-3	1	-1	4	4	4	L
1	81	4+136	BC .	70032700	.7	X	1	1	X	1.1	1	2	_	.4	1	3	2	2	1	3	-5	L
	74	7+183	BC .	10003(700	7	X	X	X	X	X	X	1		1	4	1	1	1	3	3	1	L
	12.	7+905	BC.	100030900	1	X	X	X	X	X	x	1	-	1	1	1	1	1	-1	3	1	Ľ
4	81	8+743	BC.	10063(300	T	X	X	X	X	X	X	1	-	1	1	1	1	1	3	3	1	
-	82	8-676	BC.	10003(900	7.	X	X	X	X	X	X	1	_	1	1	1	1	1	4	4	1	L
	11	8+940)	BC	10003(500	7	x	X	X	X	X	X	1	_	1	1	1	1	1	4	4	1	Ľ
	#1	8+663	CP	750	11	-	X	X	X	X	X	- 5	-	1	1	1	1	-1	- 1	3	1	1
-	92	9=825	BC .	100022300	.7	X	X	X	X	X	x	1		1	1	1	1	1	3	2	1	H
	11/1	11+500	BC	100635300	1	x	X	X	X	X	X	- 1	-	1.	\$	1	1	1	3	3	1	1
1	121	12+400	BC	1903(100	11	X	X	X	X	X	X	2		1	2	2	2	2	- 2	2	2	L
1	12:2	12+554	BC .	2/34005(2400	15.4	X	X	X	X	X	X	3		2	3	3	1	1	3	3	3	
1	13/1	13+320	BC.	100030300	1	X	x	X	X	X	X	2		3	3	2	2	2	1.	3	2	L
	141	: 14+748	BC .	1000X500	7	X	X	X	X	X	X	1	_	2	1	1	1	-1	2.	2	1	
	121	12-038	BC	10003300	1	X	1	X	X	X	X	1	-	1	1	1	1	1.	- 2	1	1	

NON-ENGINEERED RO.	AD	INV	ΈN	TO	RY		_													DE	PA	RT	ME	NT	OF	FE	ED	ER	RO	ADS
HEGROM. MONTHERM	_	_	PKD	AD N	A.442		14.4	1 3A	100	ATA		_	_			_				_	-	÷C.	ton	44. 4				_	_	1.
DETERCT. WELT MANAGEMENT	_	_	PIO	AD C	CO.		_	_	_	_	_	_	_	_	_	_	_	_	_	_	DAT	۴.	1414			_	PAC	я.		
	Ē	-	144	eù4		_	-	-	-			-	-			14.	a	-												Dem
A constant A constant	50	or e	τw σ κ								101	2 00	UN N			-					150	710	w. en							
CHARAGE (KM)		1	-					۰.		-	-										-				-		-			1-844
Tablogiumer (# / miler/Mg	10	1	+		-	+	1	+		*	+	+		٢		٢	+	1	41	۲		,		+	+	1	+	+	4	F
AMENUTE / HEGETATION	124	594	1244	54	54	1244	194	5H	245	504	1244	5H	104	594	54	5H	124	-	24	104	594	5H	54	504	1244	24	5H	-014	514	841
THE RESTUCTION OF A	5.4	54	5A	54	1A	34	54	5A	24	SA.	24	5A.	54	24	24	SA	34	54.	SA	5.4	SA.	1A	54	5A	24	5.4	SA.	14	SA.	SA
WATERCOURCE REISINES DIA VER' 19447		1	1	1								-		-																
OVI 11993 FLOOD PROME JECTION Rates	Г	1				0.5			4.7	8.7	8.7	18	1.3	13	1.0	10			14	12	.12	12	12	12	13	12	1.2	12	10	15
THEN ADDRESS CONSTRAINTS																														
Antiper MAAP Transfer and Antiper Transfer	04	5.40	PW IPH								010	1 49	UN N								58	107	W TN							
and down down to be share		-						_			-	-																		
CHARAGE (KM)																				-	-									
TEROSAAPHIT (P/R/IN/My	+			[m]	=	+	η.	۲	۴		٠		۲	٢		٢		1		۶		٢	P	٢	۴	P.	+	٠	٠	F
AND/OF / VESIC KTON	114	104	394	514	214	394	BH.	244	04	394	294	34	104	394	194	54	314	014	84	-	84	394	84	294	584	DH.	34	84	104	094
12.42 PD 10711 11.0004-028	5A	54	6A	SA.	5A	0,	Ch.	0.	Ch	CL.	Ck.	Gi.	Ck.	Ck.	CL.	CI,	CL.	Ch	CL.	04	CL.	CL.	CL.	cr.	0,	61	Cl.	Ch.	51	CL.
VATERCOURCE REINIBLE CALIER Taw?																							6							4
in the second seco	1.4			_	-		_	-		_	_	_	-										1		_					

Old DFR Road Inventory form format

Field Survey

Prior to the survey on the field, we had thorough field reconnaissance on the collection attributes data. These were the forms we came out with:

- Structures Survey Form SS1
- Road Survey Form RS1

4.1

• GPS Survey (to generate node and road table)

4.1.1 Road Survey (Attributes) Form RS1

- Columns (Fields)
- 1. Date
- 2. District code.
- 3. Road id.
- 4. Start Node Name
- 5. End Node Name
- 6. Start Chainage (km+m)
- 7. End Chainage (km+m)
- 8. Functional Class I/C/A

	Ele Elet Ven Josef Figmet Tools Gate Wriden Heb Adoge FOF Type a sustain for heb	
9. Engineering Class E/P/N	□ 22 4 3 (3) (3) (3) (3) (3) (3) (3) (3) (3) (- 4
10. Road Width (m)	F8 • S Salven	
	A B C D E F G H I J K L M N O P	P Q
11 Pavement P/II	1 DATE: REG DIST ROAD_NO START NODE END_NODE START_CHAN END_CHAINA START_CHAI END_CHAIN[FU EN ROA PAV S_U TO	JP RC
11. Lavement 170	Z 14/2/05 ASH OPF OFFO01 Bensus Junctic Sandyem 0.0000 1.000 0.000 33011 E 6.3 U 6 K	0
	4 14/2/05 ASH OFF OFFOI Bonus Juncis Sandreem 2.000 3.000 6552.000 69921 k 6.5 U G M	G
12. Surface unpaved K/G/S/G	5 14/2/05 ASH OFF OFF001 Bonsus Junctic Bankyem 3.000 4.000 9842.000 13123 I E 6.3 U G R	G
1	6 14/2/05 ASH OFF OFF001 Bonsua Junctic Sankyem 4.000 5.000 13123.000 16404 I E 6.3 U G R	G
13 Side Drains L/U	7 14/2/05 ASH OFF OFF001 Bonaua Junctic Sankyem 5.000 6.000 16404.000 19685.1 E 6.3 U G M	G
	8 14/2/05 ASH OFF OFF001 Bonsua Junctic Sankyem 6.000 7.000 19685.000 229661 E 6.3 U G H	G
14 T = 1 (E/D/H/M)	9 14/2/05 ASH 0FF 0FF01 Beeaus Juncta Sankyem 7.000 8.000 22966.000 264471 E 6.3 U G H	G
14. Iopograpny (F/K/H/M)	10 14/2/03 ASN OFF OFFOOT BEISSING JUNCE SANDYER 8,000 9,000 2004/200 295211 B 6,30 C R 11 14/2/03 ASN OFF OFFOOT BEISSING JUNCE SANDYER 0,000 10,000 2004/2000 390811 B 6,30 C R	0
	12 14/2/05 ASN OFF OFFOIL Benaua-Junctic Sankrysm 11.000 12.000 3609.000 393701 E 6.3 U G M	G
15. Roughness G/F/P	13 14/2/05 ASH OFF OFF001 Bensua Junctic Sankrem 12.000 13.000 59370.000 426511 E 6.3 U G R	G
The Hough of the	14 14/2/05 ASH OFF OFF001 Bensua Junctic Sankyem 13.000 14.000 42651.000 45932 I E 6.3 U G R	G
16 Combon C/E/P	15 14/2/05 ASH OFF OFF001 Benaua Junctic Bankyem 14.000 15.000 45932.000 49212 I E 6.3 U G M	G
10. Camper G/F/I	16 14/2/05 ASH OFF OFF001 Bonsua Junctic Sankyem 15.000 16.000 49212.000 52493 I E 6.3 U G M	G
	17 14/2/05 ASH OFF OFF011 Beesus Junctic Sankyem 16.000 17.000 53493.000 537741 E 6.3 U G M	G
17. Drainage G/F/P	19 14/2/05 ASI 0PF 0PF001 Beneral Junctic Sandreem 12,000 18,000 507/4,000 59051 B 6,00 G 8	6
	20 14/2/05 ASS OFF OFFOIT Benau Juncie Sanderem 19:000 20:000 62336:000 626171 E 6.0 U G M	F
19 Traffa H/M/I	21 14/2/05 A5H OFF OFF001 Bonaua Junctic Sankyem 20.000 21.000 63617.000 668971 E 6.0 U G R	9
	22 14/2/05 ASH OFF OFF001 Bonsua Junctic Sankyem 21.000 22.000 68897.000 72178 t E 6.0 U G R	P
	23 14/2/05 ASH OFF OFF001 Benaus Junctic Sankyem 22.000 23.000 72178.000 75459 I E 6.0 U G R	P
19. Notes	24 14/2/05 ASH OFF OFFOOI Bonsua Junctic Sankyem 23.000 24.000 75459.000 787401 E 6.0 U G M	G
	25 14/2/05 ASH 0FF 0FF01 Beesua Junctic Sankyem 24.000 24.500 78740.000 803801 E 6.0 U G M	0
	20 14/2/03 ASN OFF OFFOO3 Periodia Junita Periodia 0.000 1.000 0.000 3.01 A F 5.0 C R 27 14/2/05 ASN OFF OFFOO3 Periodia Junita Periodia 1.000 1.000 4.055 A F 5.0 C R	-
	• • • • • \ OFF(RS)1 / 6	- 10
	Ready	
	🚮 Statt 👘 Andek La., 👔 2 Novembrie - 🖉 Gathel - Ar., 🖓 Arthur GS., 🕥 2 Novembrie - 😰 Marson Press,	8

4.1.2 Structures Survey (Attributes) Form

- Columns (Fields)
- Date 1.
- 2. District Code
- Road id
- 4. Start Node Name
- 5. End Node Name
- 6. Structure No
- **River Name**
- **GPS** Northings 8.

9. GPS Eastings	9.	GPS	Eastings
-----------------	----	-----	----------

- 10. Chainage (km+m)
- 11. Structure Type (eg. BC,SB,CP,CB,TB,LB)

- 12. Size (mm) n / dia, n / W x H
- 13. Length (M)
- 14. Headwalls (0/1/2)(R/L)
- 15. Structure Condition Rating (1-5)
- 16. Notes

Ete Dat	30em	2met	Pyrnet Tools	Date 1011	and 1	90	Adoge PDF					Type	a question	n for th	-	* ×
00000	164	13.	10.12	- 21 100%		4.1	Bookman Old 1	Shyle 🗶 10	- 1 / 1	# # # H H	5 % .	- 58	11 3			- A+
	-	at at	Police Med	AL PERMIT			- Bullinson	1								
5490			CIDENANDERG	Bour 12820510	FF et	ne i	No tol									
AB	C	D	E	F	G	H	1	1	К	E.	M	N	0	P	9	-
1 Date Re.	Dist	Road	i Start Node	End Node	Stru	Riv	North	East	Latitude	Longitude	Chains	Typ	Sizete	Lec	Rat	NOTES
2 14/02AS	OFF	OFF00	1Bonaua Jet	Sankyem	1		822139.128	650004.937	6.5606966000	+1.4122028333	0+500	CB	2Span,	8.0	1	2H PIC
3 14/0CAS	OFF	OFF00	1Bonaua Jet	Sankyem	.2		824537.995	648100.059	6.5630744000	+1.4140980529	1+500	CP	1/900	8.0	1	2HW.27
4 14/0CAS	OFF	OFF00	1Bonsua Jet	Sankyem	3		825913.612	644019.812	6.5644335200	+1.4221522000	2+900	CP	1/900	8.0	1	2HW.29
5 14/00AS	OFF	OFF00	1Bonsus Jct	Sankyem	4		826084.432	643736.389	6.5646026162	-1.4224339243	3+020	CP	1/600	8.2	1	2HW,2V
6 14/00AS	OFF	OFF00	/IBonsua Jct	Senkyem	5		825904.069	641836.351	6.5644208000	-1.4243206000	3+700	CP	1/900	8.0	1	2HW.2V
7 14/01AS	OFF	OFF00:	1Bonaua Jet	Sankyem	6		825727.226	639992.112	6.5642425385	+1,4301518615	4+300	CP	1/900	8.0	1	2HW,29
8 14/05AS	OFF	OFF00:	IBonaua Jet	Sankyem	7		826001.202	639521.065	6.5645137143	-1.4306200743	4+400	CP	1/900	8.0	1	2HW.27
9 14/02AS	OFF	OFF00:	1Bonsus Jct	. Sankyem	8		826286.463	639257.755	6.5647964000	+1.4308820000	4+600	CP	1/900	8.0	1	2HW,27
10 14/01AS	OFF	07700	1Bonsus Jet	Sankyem	.9		826425.153	639201.175	6.5649339454	-1.4309384000	4+650	CP	1/600	8.3	1	2HW,27
11 14/0CAS	OFF	OFF00	1Bonsua Jet	Sankyem	10		827147.755	638307.943	6.5656496789	-1.4318265737	5+010	CP	1/900	8.0	1	2HW,29
12 14/00AS	OFF	OFFOO:	1Bonsua Jct	Sankyem	11		829084.782	635934.738	6.5715683000	+1.4341864000	6+000	DC	1/4x4	8.0	1	2HW,27
13 14/01AS	OFF	OFF00	IBonaua Jet	Sankyem	12		830020.122	634975.180	6.5724950228	-1.4351408000	6+400	CP	1/900	8.0	1	2HW.2V
14 14/02AS	OFF	OFF00	1 Bonsua Jet	Sankyem	13		831753.124	633199.713	6.5742120500	-1.4409067500	7+200	CP	1/900	8.2	1	2HW,27
15 14/00AS	OFF	OFF00	1 Bonsus Jet	Sankyem	14		832911.996	632147.308	6.5753604343	-1.4419537371	7+700	CP	1/900	8.0	2	LHW Br
16 14/00AS	OFF	OFF00	(Bonstan Jet	Sankyem	15		834717.364	631064.998	6.5811503235	-1.4430314471	8+400	CP	1/900	8.0	1	2HW.20
17 14/00AS	OFF	OFFOO:	1Bonsus Jet	Sankyem	16		834969.148	630944.163	6.5813999946	+1.4431518486	8+500	BC.	3/4x4	8.0	1	2HW,29
18 14/0CAS	OFF	OFF00	1Bonaua Jet	Sankyem	17		833417.929	630628.589	6.5818448537	-1.4434659659	8+700	CP	3/900	9.0	- 1	2HW.29
19 14/00AS	OFF	OFF00	1Bonsus Jet	Sankyem	18		836165.699	630090.077	6.5825860649	-1.4440019676	9+000	CP.	1/900	8.0	1	2HW.27
20 14/00AS	OFF	OFF00	1 Bonaua Jet	Sankyem	19		837599.054	628092.907	6.5840053167	-1.4459877500	9+800	CP	1/900	8.0	1	2HW.29
21 14/00A5	OFF	OFF00	1Bonsus Jct	Sankyem	20		538300.184	626597.722	6.5846987167	-1.4514738333	10+300	BC	1/3x2	8.2	1	2HW,29
22 14/00AS	OFF	OFFO0	IBonsus Jet	Sankyem	21		841385.321	624830.563	6.5917574486	-1.4532338703	11+500	DC	2/3x3	8.0	1	2HW.2V
23 14/05AS	OFF	OFF00	Bonsua Jet	Sankyem	22		842594.451	623561.045	6.5929552919	-1,4544966919	12+100	OCP.	1/900	8.0	1	2HW,29
24 14/01AS	OFF	OFFOO.	I Bonaua Jet	Sankyem	23		843652.503	622586.886	6.5940036769	-1.4554659385	12+600	CP	1/900	8.0	1	2HW.20
25 14/01AS	OFF	OFF00	Bonsus Jet	Sankyem	24		843940.068	622229.709	6.5942884667	-1.4558211500	12+700	CP	1/900	8.2	1	2HW.29
26 14/00AS	OFF	OFF00:	1Bonsus Jet	Sankyem	25	1	844670.173	621498.500	6.5950118000	+1.4605485765	13+050	CF	1/900	8.0	1	2HW.27
27 14/0CAS	OFF	OFF00	1Bonaua Jet	Sankyem	26		844095.020	619372.276	6.5944389000	+1.4624607667	13+100	BC	1/2x1	8.0	1	2HW.27
* * * H/Sh	eet1 /	Sheet2	(Sheet3/						e							31
Ready	10000	A Distance			-					1.1			1.1.1			A DECK
1 start		- Income		A Mounth.	11			Arrites CD	Con Henry		and the		m 4 .#	12.4	20	

Road definition (Attributes)

Columns (Fields)

- Region
- District
- Functional class (I/C/A)
- Road id
- Start node name
- End node name
- Length (km)
- Overall Road condition rating (G/F/P)

4.1.4 Node definition (Attributes)

Columns (Fields)

- Region
- District
- Node id
- Node name
- Node Type (J=Jct, V=Village, R=Ref)
- Northing
- Easting

4.1.5

GIS Map

For the purpose of identifying and classifying, the following functions were used to create GIS Map

- Basic functions (editing, display, measurements,)
- Convert Polyline to PolylineM (adding M-values)
- Overlay
- Dynamic segmentation
- Raster display and analysis
- Surface modeling.
- Links to other software.

5.1 **Two areas were identified**

• 1/ Training and Updating

• 2/ Engineering (Which is a relationship between Hanning and Management review cycles)

1

- - 4 areas are identified
- > Pavement Management System
- ≻ Bridge & culvert Maintenance
- Traffic Engineering

Safety Management

