Understanding GPS Processing and Results

Maxwell Owusu ANSAH, Ghana

Key words: Cadastre, Capacity building, CPD, Education, GPS, Positioning

SUMMARY

The use of Global Positioning Systems has undauntedly brought with it many welcome advances in its applications in surveying. The high accuracies achievable with the technology accompanied by its ability to overcome the age old problem of intervisibility have made GPS surveys a first choice for most surveyors. GPS accuracies and applications are increasing by the day.

The understanding of the physics of GPS working is of little concern to the surveyor, who most of the time does not interfere with the data capture. The non-interference of the surveyor as regards the capture of data deceives many surveyors into thinking that the GPS is errorproof as no human errors are incorporated (unlike say in a theodolite traverses). For the surveyor however, errors in any measurement and the reliability of any such survey measurement has to be evaluated and understood clearly.

There is the need for a clear understanding of the processing of GPS data and the results obtained from a GPS processing report. These results need to be interpreted rightly in order to give a clear understanding between the surveyor and the client and all users of the results.

Standards need to be developed quickly to meet the changing trends in GPS surveys if we are not be end up with very weak survey control networks, bad cadastre, boundary surveys, etc just because when the processing results were saying the result were bad, we just did not understand the report.

The surveyor clearly needs to be able to tell the difference between a bad GPS survey and a good one.

Understanding GPS Processing and Results

Maxwell Owusu ANSAH, Ghana

1. INTRODUCTION

The issue of standards is of paramount importance to the surveyor and with the ever increasing advancement of technology, surveys have become faster and milestone successes have been achieved. Some of the most important ones have come in the form of software which can greatly improve the speed of delivery and the GPS's ability to overcome the problem of intervisibility.
Such technological advances first have to stand the rigorous accuracy standards of the surveying however.
Standards are clear statements of the requirements of an acceptable survey. So we need to be clear of the accuracies that are needed and look out for these accuracies. We need these clear statements just as we need laws in a state to guard law and order.To the surveyor these lowing of standards will bring long with it:

- Weakening of the various survey networks,
- A cause for conflict along boundaries,
- Cost of redoing surveys etc.

Fortunately there are various indicators of the quality of a GPS survey and these indicators are a communicated through a number of reports generated by the GPS data processing software. Some of the main reports to be looked at are as listed below:

- Process Summary reports
- Repeat Vector Summary
- Loop Closure Summary
- Network Adjustment reports

These reports will be discussed and their indicators pointed-out.
Before that however the proper way of carrying out a good GPS survey on the field will have to be discussed.

2. PROCEDURES FOR FIELD WORK

The GPS generally follows many of the already established principles relating to survey methods as triangulation, trilateration, resection etc. Such principles as strength of triangles, good control network and proper setup of equipment over stations, are as important in GPS surveys as in any other type of survey. Other factors as ensuring a clear sky within the elevation mask to avoid multipath, keeping base lengths within distances where it can be safely assumed that all receivers receive signal that have gone through almost the same atmospheric conditions and therefore needing the same amount of correct need to be considered in GPS surveys.

It is important that a GPS survey has a minimum of two known points or controls to be used as checks of the reliability of results and every point will belong to a closed network linked to the known control point.

3. PREPROCESSING OF GPS DATA

This refers to all activities done before the actual processing of the data to obtain the final coordinates of the unknowns. Theses could range from the importing observed data into the processing software through editing of the station names, editing of coordinates, choosing the base or reference station to be used for the processing, specifying the type and height of antenna, editing of satellite data collected to the computation of the vectors. It is important to make this distinction between preprocessing and actual processing of data which ends with a constrained adjustment carried out on the unknowns. The erroneous application of the terms has resulted in the mistaken use of unadjusted coordinates in many instances.
After the preprocessing of the data, a report may be generated to give an indication of the type of solution reached. In the sample report (in Courier New Font) generated by a Sokkia post processing software, Sokkia Spectrum Survey, the first part (between the first two horizontal broken lines) indicates the project path and the type of coordinate system, the Datum, the units and date for the preprocessing. The second row gives the total number of vectors in the project. The third row gives a breakdown of the type of solution reached for the total number of vectors stated in the previous row. The last row gives an indication of the specific solution reached (Solution) for the individual occupations or vectors (vectors/occ), the various standard deviations (SD), Root Mean Square (RMS), the slant distances (Length) between occupations, the percentage of the data (Used) of the total collected for the particular occupation and the (Ratio) of best solution to the next-best solution.

```
Spectrum® Survey 3.51 PROCESS
SUMMARY
Project:
Coordinate System: ghTM [Transverse Mercator] Datum: GH
xyz
Geoid Model: <None> Units:
Meters
Processing Date: 2005/05/13 18:29:58.96 (UTC)
--
VECTORS [19 total]
Fixed: 14
Float: 5 (*)
Vector/Occ. Solution Length Used Ratio RMS
SD
\begin{tabular}{|c|c|c|c|c|}
\hline \(\begin{array}{rrr}\text { GRR } 05 \text { FTP1-GRR } 05 & \text { FTP2 } \\ 01 & \text { Fixed (L1) }\end{array}\) & 8960.016 & 99.04\% & 4.0 & 0.010 \\
\hline \multicolumn{5}{|l|}{0.008 (L1)} \\
\hline \multicolumn{5}{|l|}{GRR 05 FTP1-GRR YSO 1} \\
\hline 01 Fixed (L1) & 6619.008 & 97.85\% & 4.0 & 0.012 \\
\hline 0.010 & & & & \\
\hline 02 * Float (L1) & 6619.473 & 40.73\% & & 0.011 \\
\hline \multicolumn{5}{|l|}{0.164} \\
\hline GRR 05 FTP1-GRR 05 FTP3 & & & & \\
\hline 01 Fixed (L1) & 8896.303 & 93.04\% & 3.0 & 0.010 \\
\hline \multicolumn{5}{|l|}{0.010} \\
\hline GRR 05 FTP1-GRR 05 FTP4 & & & & \\
\hline 01 Fixed (L1) & 64.467 & 87.75\% & 4.1 & 0.010 \\
\hline \multicolumn{5}{|l|}{0.011} \\
\hline \multicolumn{5}{|l|}{CFP179-GRR 05 FTP2} \\
\hline 01 Fixed (L5 narrowlane) & 4066.299 & 56.24\% & 5.4 & 0.006 \\
\hline \multicolumn{5}{|l|}{0.016} \\
\hline 02 * Float (L1) & 4066.225 & 57.34\% & & 0.007 \\
\hline \multicolumn{5}{|l|}{0.076} \\
\hline 03 * Float (L1) & 4066.781 & 62.43\% & & 0.010 \\
\hline \multicolumn{5}{|l|}{0.139} \\
\hline \multicolumn{5}{|l|}{CFP179-GRR YSO 1} \\
\hline 01 * Float (L1) & 3678.690 & 68.26\% & & 0.009 \\
\hline \multicolumn{5}{|l|}{0.097} \\
\hline 02 Fixed (L1) & 3678.634 & 75.44\% & 2.0 & 0.010 \\
\hline \multicolumn{5}{|l|}{0.010} \\
\hline 03 * Float (L1) & 3679.769 & 42.51\% & & 0.011 \\
\hline \multicolumn{5}{|l|}{0.130} \\
\hline \multicolumn{5}{|l|}{GRR 05 FTP2-GRR YSO 1} \\
\hline 01 Fixed (L1) & 2976.412 & 97.88\% & 4.4 & 0.008 \\
\hline \multicolumn{5}{|l|}{0.008} \\
\hline 02 Fixed (L1) & 2976.416 & 99.11\% & 8.3 & 0.009 \\
\hline \multicolumn{5}{|l|}{0.008 (L1)} \\
\hline 03 Fixed (L1) & 2976.414 & 99.96\% & 5.2 & 0.007 \\
\hline \multicolumn{5}{|l|}{0.006} \\
\hline \multicolumn{5}{|l|}{GRR 05 FTP2-GRR 05 FTP3} \\
\hline 01 Fixed (L1) & 63.701 & 100.00\% & 5.5 & 0.005 \\
\hline \multicolumn{5}{|l|}{0.005} \\
\hline \multicolumn{5}{|l|}{GRR 05 FTP2-GRR 05 FTP4} \\
\hline 01 Fixed (L1) & 8895.652 & 92.73\% & 5.3 & 0.011 \\
\hline \multicolumn{5}{|l|}{0.011} \\
\hline \multicolumn{5}{|l|}{GRR 05 FTP3-GRR 05 FTP4} \\
\hline 01 Fixed (L1) & 8831.931 & 96.15\% & 2.2 & 0.011 \\
\hline \multicolumn{5}{|l|}{0.012} \\
\hline \multicolumn{5}{|l|}{GRR 05 FTP4-GRR YSO 1} \\
\hline 01 Fixed (L1) & 6556.714 & 93.68\% & 4.6 & 0.012 \\
\hline \multicolumn{5}{|l|}{0.012} \\
\hline \multicolumn{5}{|l|}{CFP179-GRR 05 FTP1} \\
\hline 01 Fixed (L1) & 5752.912 & 86.16\% & 3.8 & 0.010 \\
\hline 0.013 & & & & \\
\hline
\end{tabular}

One of the more important features of this report is the type of solution reached which gives an indication of whether all the integer cycle ambiguities were solved. If all are solved the PS5.4 - GNSS Processing and Applications
Maxwell Owusu Ansah
Understanding GPS Processing and Results
Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006
type of solution reached will be a Fixed one otherwise the solution is a Float. There we always want to see fixed solutions. Note that the SD of many of the fixed solutions is generally lower than those with float solutions. There are instances where SD of float solutions is less than some of those with fixed solutions.

\section*{4. TROUBLESHOOTING USING GPS REPORTS}

We shall now take a closer look at some of the GPS software generated reports which can be used to find out blunders in observed vectors and also serve as a guide to understand the results obtained after the processing of the field data collected.

\subsection*{4.1 The Repeat Vector Summary}

The repeat vector summary shows the variation in the slope distances changes in easting, northing and elevation of all vectors that have had multiple occupations. The maximum differences are shown below each line and this is a very good identifier of blunders which can be used to eliminate bad observations from the multiple observations.
```

Spectrum® Survey 3.51 REPEAT VECTOR
SUMMARY

Project: C:\...\Common\Spectrum Projects\Transformation 2.spr
Coordinate System: ghTM [Transverse Mercator] Datum: GH
xyz
Geoid Model: <None> Units:
Meters
Processing Date: 2005/05/13 18:29:58.96 (UTC)
Vector/Occ. Slope Distance(m) dE(m) dN(m) dH(m)

GRR 05 FTP1-GRR YSO 1
01 6617.115 <rrer -5.197
02 6617.580 -6584.574 -660.091 -5.042
Max Diff. 0.465 0.472 0.050 0.155
CFP179-GRR 05 FTP2
01 4065.042 4002.093 -657.085 -275.786
02 4064.968 4002.021 -657.085 -275.743
03 4065.524 4002.576 -657.088 -275.868
Max Diff. 0.556 0.555 0.003 0.125
CFP179-GRR YSO 1

01	3677.557	2139.194	-2977.208	-290.705
02	3677.502	2139.098	-2977.211	-290.679
03	3678.636	2140.874	-2977.286	-291.197

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Max Diff. & 1.134 & 1.776 & 0.078 & 0.518 \\
\hline \multicolumn{6}{|l|}{GRR 05 FTP2-GRR YSO 1} \\
\hline 01 & & 2975.554 & -1862.993 & -2320. 121 & -14.814 \\
\hline 02 & & 2975.558 & -1862.996 & -2320.123 & -14.931 \\
\hline 03 & & 2975.556 & -1862.992 & -2320.124 & -14.858 \\
\hline & Max Diff. & 0.004 & 0.004 & 0.003 & 0.117 \\
\hline
\end{tabular}

\subsection*{4.2 Loop Closure Summary}

Loop closure can be a very important identifier of blunders. When closed loops are selected and their closures calculated, particular vectors can easily be identified as degrading the misclose and therefore eliminated from further adjustments. The precisions can easily be compared to the criterion for rejection and accepted or rejected accordingly.
```

Sample Loop Closure Report:
Spectrum@ Survey 3.51 LOOP
SUMMARY

```
Project Name: C:\Sokkia\Common\SPECTR~1\TRANSF~1.SPR
Coordinate System: ghTM [Transverse Mercator] Datum: GH
xyz
Geoid Model: <None> Units:
Meters
Report Date: 2006/07/13 22:16:17 (UTC)

```

Total Length: 18779.330
Precision: 1/688803 (= 1.45 PPM)
Loop Name: Loop4

```

```

0.112
Total Segments: 3
Total Length: 18428.778
Precision: 1/163785 (= 6.11 PPM)

```

In the above report the closure indicates the amount of adjustment to be applied to the various components to bring them to the ideal situation of no errors (mathematically at least) and thereby force a closure i.e closure values for all the components must be zero. It is clear from the above tables that the Loop4 has more errors (larger closure values) than Loop5 and may have blunder(s).

\subsection*{4.3 Network Adjustment}

Network adjustment is carried out on the various networks observed in the project. At this stage the various loop closures are expected to be corrected for a mathematical closure and in doing so some vectors are moved. There are two kinds of adjustment namely the Free adjustment and the Constrained adjustment.

\subsection*{4.4 Free Adjustment}

In this type of adjustment the internal consistencies of the survey is checked. This can also be a very good identifier of blunders. Only one measured control (three dimensional) is held fixed in this process which allows differences in observed values to be obtained as residuals, with the exclusion of errors between coordinates of other known points. The blunders identified in this process are excluded from the next stage of adjustment which is the constrained adjustment.

\subsection*{4.5 Constrained Adjustment}

In a constrained more than one measured control (three dimensional) are held fixed and the coordinates of the unknowns are computed for. The unknowns are calculated for while the consistency in known values is still maintained.

\subsection*{4.6 Interpreting Adjustment Reports}

The adjustment report is about the one most important report that could be generated at the end of a GPS survey processing. In the sample report below, some of the more important highlights are shaded and they are:
- The type of adjustment to specify the kind of adjustment being currently applied. In the current adjustment the type is constrained as two controls are held fixed to calculate the coordinates as it the unknown.
- The second is the summary of adjusted statistics which shows the numbers observations, unknowns, knowns and the redundancies and the number of iterations used.
- Next is the Chi Square Test on the Variance Factor which does a test on the hypothesis that the predicted error applied to each vector observation in the network is realistic, based on the adjustment. The predicted errors before adjustment are shown by the a priori variance. The test is done by a comparison of the a priori variance to the variance after adjustment called the A Posteriori. The closer the test result is to 1.0 , the better the applied weight. However, a value below the test range does not necessarily mean that the GPS survey is bad but that the errors were estimated to be too high i.e. the precision of the survey is higher than initially assumed. On the other hand a value higher than the range although could mean that there are blunders still inherent in the survey, could also be revealing inconsistencies in the previous surveys from which coordinates of the controls were derived.
```

Sample Report:
Spectrum® Survey 3.50 Network Adjustment
Report

Project: C:\Sokkia\Common\Spectrum Projects\Fig
Controls171205\191205ExpPts.spr
Coordinate System: GHTM [Transverse Mercator] Datum: GH
xyz
Geoid Model: <None> Units:
Meters
Adjustment Time: 2005/12/19 10:57:33 (LOCAL) Time Zone:
GMT+0.00h

```
    - Deflection of vertical (N-S) Not used
    - Deflection of vertical (E-W) Not used
    - Horizontal rotation Not used
    - Scale difference Not used
Iteration Criteria:
    - Maximum iteration 5
    - Maximum coordinate difference (m) 0.0001
Reference Datum:
    - Datum Name GH xyz
    - Semi-major axis (m) 6378306.064
    - Flattening (m) 1.0/296.002627791
Weight Options:
    - Use modeled standard deviations
    - Use individual weighting scale
Modeled Standard Deviations
    - X component 5.0 mm + 1.0 ppm
    - Y component 5.0 mm + 1.0 ppm
    - Z component
    5.0 mm + 1.0 ppm
Geoid Model: NONE
    - Orthometric heights will not be computed
Transformation to Map Coordinate System ...YES
    - System name
    Transverse Mercator
    System type
    - Linear unit
                                    Meters
    Parameters
    Latitude N 4 40 00.00000
    W 1 00 00.00000
    False Northing (m) 0.000
    False Easting (m) 274320.000
    Scale
                            0.99975
    - Centroid:
\begin{tabular}{lrrr} 
Latitude & N & 612039.52569 \\
Longitude (m) & W & 10107.51356 \\
Elevation (m) & & & 181.528 \\
& & & 185470.972 \\
Northing (m) & & 272245.504 \\
Easting (m) & & 0.99972151
\end{tabular}
Number of Points:
- Horizontal fixed \& height fixed 2
- Horizontal fixed \& height free 0
- Horizontal free \& height fixed 0
- Horizontal free \& height free 6
total 8
PS5.4 - GNSS Processing and Applications
```

Number of Unknowns:
- Latitude 6
- Longitude 6
- Height 6
- Additional parameters 0
(a) total 18
Number of observations
- X component24

```
- Y component ..... 4
- Z component ..... 24
(b) total 72
```

Number of Rank Defect	(c)	0
Number of Total Redundancy	$(\mathrm{b})+(\mathrm{c})-(\mathrm{a})$	54

```
Chi Square Test on the Variance Factor
Total Number of Observations: 72
Redundancy: ..... 54
Confidence Level: ..... 95\%
A Priori Variance Factor: 1.0000
A Posteriori Variance Factor (VF): 1.1591
Chi Square Test on the Variance Factor (1.1591)
0.6584 < VF < 1.4128Standard Deviations for the observations are within the desired range.
** Note: The Standarded Deviation of Unit Weight is the square root of theVariance Factor.
Input Coordinates and Corrections
Point Input Coordinates

Corrections
Seconds m
Horizontal Vector100


YSO2





```

Reliability of Observations

```
-- -
        \(\begin{array}{lc}\text { Standard Deviations } & \text { Reliability } \\ \text { Corr Obs Residuals Redundancy } & \text { Internal External }\end{array}\)
        (mm) (mm)
Vector: FJN4-100 weight= 1.00
\begin{tabular}{llllll}
N & 3.88 & 3.30 & 0.42 & 0.03 & 4.85 \\
E & 4.46 & 3.80 & 0.42 & 0.03 & 4.85 \\
H & 4.76 & 4.05 & 0.42 & 0.03 & 4.85
\end{tabular}
Vector: CMP1-100 weight= 1.00
\begin{tabular}{llllll} 
N & 3.90 & 3.45 & 0.44 & 0.03 & 4.67 \\
E & 4.48 & 3.97 & 0.44 & 0.03 & 4.67 \\
H & 4.78 & 4.23 & 0.44 & 0.03 & 4.67
\end{tabular}

Vector: 121-YSO2 weight= 1.00
\begin{tabular}{llllll}
N & 1.80 & 4.47 & 0.86 & 0.02 & 1.66 \\
E & 2.07 & 5.14 & 0.86 & 0.02 & 1.66 \\
H & 2.21 & 5.48 & 0.86 & 0.02 & 1.66
\end{tabular}
\begin{tabular}{clcccc} 
Vector: & 121-YSO2 & Occ.[02] & weight= 1.00 & & \\
N & 1.80 & 4.47 & 0.86 & 0.02 & 1.66 \\
E & 2.07 & 5.14 & 0.86 & 0.02 & 1.66 \\
H & 2.21 & 5.48 & 0.86 & 0.02 & 1.66
\end{tabular}

Vector: YSO2-YSO1 weight= 1.00
\begin{tabular}{llllll}
N & 2.47 & 4.08 & 0.73 & 0.02 & 2.50 \\
E & 2.84 & 4.69 & 0.73 & 0.02 & 2.50 \\
H & 3.03 & 5.01 & 0.73 & 0.02 & 2.50
\end{tabular}

Vector: YSO2-CMP1 weight= 1.00
N \(2.24 \quad 4.87 \quad 0.8303\)
\begin{tabular}{llllll} 
E & 2.58 & 5.60 & 0.83 & 0.03 & 1.90
\end{tabular}
\begin{tabular}{llllll}
H & 2.75 & 5.97 & 0.83 & 0.03 & 1.90
\end{tabular}

Vector: \(128-\mathrm{YSO} 2\) weight= 1.00
\begin{tabular}{llllll}
N & 1.80 & 5.22 & 0.89 & 0.03 & 1.42 \\
E & 2.07 & 6.00 & 0.89 & 0.03 & 1.42 \\
H & 2.21 & 6.41 & 0.89 & 0.03 & 1.42
\end{tabular}

Vector: YS01-FJN4 weight= 1.00
\begin{tabular}{llllll}
N & 2.96 & 4.22 & 0.67 & 0.03 & 2.90 \\
E & 3.40 & 4.85 & 0.67 & 0.03 & 2.90 \\
H & 3.63 & 5.18 & 0.67 & 0.03 & 2.90
\end{tabular}

Vector: CMP1-FJN4 weight= 1.00
\begin{tabular}{llllll} 
N & 2.73 & 3.92 & 0.67 & 0.03 & 2.87 \\
E & 3.13 & 4.51 & 0.67 & 0.03 & 2.87 \\
H & 3.34 & 4.81 & 0.67 & 0.03 & 2.87
\end{tabular}

PS5.4 - GNSS Processing and Applications
Maxwell Owusu Ansah
Understanding GPS Processing and Results
Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

```

 Relative Precision
    ```
```

```
    Ellip. Dist.
        Height Diff.
            Azimuth Std Dev
                (m) (mm)
Vector: YSO2-YSO1 weight= 1.00
        204.404 Hor. 1/73374 major 6.8 mm
            -3.250 2.8 Ver. 1/73372 azm. 90 deg
    \(2840306.9 \quad 2.8 \mathrm{sec}\)
Vector: YS02-CMP1 weight= 1.00
    \(2567.691 \quad 2.5\)
        11.545 Ver. 2.51014470 azm. 90 deg
\begin{tabular}{|c|c|c|c|}
\hline 2900531.6 & 0.2 sec & & minor 6.2 mm \\
\hline Vector: YSO2-JNC & weight= 1.00 & & \\
\hline 1625.835 & 3.6 & Hor. 1/446759 & major 8.9 mm \\
\hline -13.207 & 3.6 & Ver. 1/446747 & azm. 0 deg \\
\hline 1054626.4 & 0.5 sec & & minor 8.9 mm \\
\hline Vector: YSO2-FJN4 & weight= 1.00 & & \\
\hline 2258.864 & 3.2 & Hor. 1/714422 & major 7.7 mm \\
\hline 16.694 & 3.2 & Ver. 1/714400 & azm. 90 deg \\
\hline 2911346.0 & 0.3 sec & & minor 7.7 mm \\
\hline
\end{tabular}

Desired Network Accuracy was met for all Vectors

\section*{5. CONCLUSION}

There is the need for the surveyor and the users of GPS survey data to have a basis of accepting and rejecting a GPS survey result as these results are clearly not sacrosanct. There is the need to know what to look out for in the various GPS reports and keep the surveyor on his toes to keep the survey standards high.

\section*{REFERENCES}

Bomford, Guy, 1980, Geodesy: Clarendon Press, Oxford, 4th ed.
Point, Inc., 2003, Spectrum Survey Reference Manual.

\section*{BIOGRAPHICAL NOTES}

Academic experience: BSc. Geodetic Engineering, Kwame Nkrumah Univ. of Science \& Technology, Kumasi, Ghana.
Current position: Ag. Survey Manager, Geotech Systems Ltd.
Practical experience: Cadastral surveying, mapping, Engineering Surveys, GPS Surveys /
Training.

\section*{CONTACTS}

Maxwell Owusu Ansah
Geotech Systems Ltd.
27 Samora Machel Rd
Asylum Down, Accra
GHANA
Tel. +233 244810288
Fax + 23321236475
Email:max.ansah@geotechsys.com
Web site: www.geotechsys.com```

