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SUMMARY  
 
One of the main tasks of geodetic surveying is measuring and analyzing deformations and 
movements of natural or man made objects. Nowadays geodetic deformation analysis means 
geodetic analysis of dynamic and kinematic processes (Welsch, Heunecke, 2001), which 
means incorporating the influencing factors and time dependence. Models describing the 
deformation as a function of time are kinematic models.  
 
From the instruments point of view modern geodetic terrestrial instruments allow capturing 
dynamic (kinematic) process with high frequency of measurements. With proper deformation 
model the system state and its accuracy are definable in real time. Because the object is 
permanently in motion no redundant observations are available for the time point. The 
classical geodetic adjustment cannot be used. Instead, the filter methods have to be applied. 
The Kalman filter represents a method of advanced geodetic analysis of dynamic and 
kinematic processes. The estimation is based on predicting the future system state by using 
known past behaviour. 
 
The objective of the article is to introduce the Kalman filter as an alternative method for 
estimation of kinematic geodetic measurements. On the basis of kinematic process simulation 
the model of linear Kalman filter is given in detail. The kinematic process is captured with 
motorized electronic tachymeter, which enables automatic tracking of reflector and 
measuring. In the numerical example the importance of initial filter parameters definition, 
with the emphasis on defining the process noise, is given.  
 
From the numerical example, we can conclude that in the future work the emphasis should be 
given to research efficiency of the used instrument for kinematic measurements. Above all, a 
non-linear Kalman filter model, where the distance and angle measurement are directly 
processed, has to be developed. For the evaluation of the mathematical model the appropriate 
calibration system with known trajectory and velocity of the motion should be used. Such 
system would assure independent measure of certainty. It will also be possible to test the 
instrument’s efficiency for kinematic measurements in dependence of measured values and 
velocity. 
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1. INTRODUCTION 
 
Geodetic surveying has since ancient times dealt with tasks that involve measurements 
related to objects in motion or objects seemingly in motion. In the past, the study of 
kinematic tasks was performed based on transformation of the kinematic problem into a 
sequence of static measurements. The results of subsequently processed static observations, 
performed at different points in time, are changes in the position of observed points of an 
object in the time between the chosen time points of observations. The advancement of 
kinematic surveying systems – Global Positioning System (GPS) and Terrestrial Positioning 
System (TPS) – introduced different instruments from different manufacturers, which enable 
automated, continuous monitoring of objects in motion and almost real-time positioning.  
 
Conventionally, the procedures of studying deformation processes were in the past based on 
static and quasi-static models. The development of computer science, new surveying 
techniques and evaluation algorithms in the mid-1960s considerably changed the methods of 
deformation analysis. Besides the purely basic delineation of the geometric state, the methods 
included the temporal course of deformations and displacements; the so-called kinematic 
models were introduced. The kinematic approach to point coordinates as functions of time 
tries to describe the changes with coordinates, velocity and acceleration. In order to describe 
the movement of a point, one first needs to describe the trajectory as a function of time, as 
well as monitor the geodetic datum of the chosen coordinate system.  
 
In the kinematic surveying technique we deal with temporal analysis and filtering techniques, 
which are based on adjustments of observations and give the relation between the 
observations and the unknowns in the stochastic and functional models. Since the position 

),,( zyx  in kinematic measurements is a function of time ))(),(),(()( tztytxtr = , the a posteriori 
processing based on a set of redundant observations is not possible, which necessitates the 
use of procedures that enable almost real-time evaluation of observations. The evaluation is 
based on predicting the a priori expected behaviour of a system, based on understanding of its 
past behaviour. In real time series the presence of noise is frequent, which disturbs the 
modeling and acquisition of optimal results. The standard techniques of noise removal from 
the time series include filtering and smoothing. In the sense of least squares estimation, the 
removal of noise from the time series has been optimized by the Kalman filter, which can be 
used only if we are familiar with the process equations (Lotrič, 2000).  
 
In the continuation we represent the model of the linear Kalman filter and a simple case of its 
application for evaluation of kinematic measurements, performed by electronic tachymeter 
TCRA1105plus Leica Geosystems.  
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2. KALMAN FILTER 
 
The theory of the Kalman filter was derived from the works of Gauss, Kolmogorov and 
findings of the Wiener filter in the beginning of the 1960s. In general, the purpose of filtering 
is to separate one object from another. The problem of filtering in engineering results from 
the electrotechnical field: determination of the signal in a specific frequency area and 
elimination of frequencies outside the defined area. Basically, the problem can be addressed 
in two ways:  
− by choosing proper instruments, or 
− by modeling an adequate mathematical algorithm for evaluation of desired and measured 

quantities. 
 
In the 1940s Norbert Wiener addressed the problem from the mathematical aspect in trying to 
find the value of the filtered frequency that would enable an optimal separation of the signal 
from disturbance effects – noise. The result was the Wiener filter which was characterized as 
follows:  
− assumption that signal and noise are random processes, 
− criterion for best performance is minimum mean-square error, 
− the solution is based on determination of optimal filter weighting function. 
 
The result of the Wiener filter is the weighting function, which defines the weights of input 
values in such a way that the result is the optimal estimate of output quantities in a given 
moment. The algorithm provides an estimation of the signal for the previous moment – 
smoothing, estimation of the signal for the current moment – filtering, or prediction of the 
value of the signal for the next moment – prediction (Figure 1).  
 

 
 

Figure 1: Three types of estimation problems; estimate desired at time t  (Gelb, 1974) 
 
The Wiener approach to filtering by the least-squares method is also used in the Kalman 
filter. Both models are based on the definition of the weighting function: how to weight the 
input data to ensure best estimate of the desired quantities in the present moment (Figure 2).  
 

 
 

Figure 2: Block diagram depicting system, measurement and estimator (Gelb, 1974) 
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First practical applications of the Kalman filter were in the area of navigation and related to 
the definition of trajectories of a moving body in space and time.  
 
The Kalman filter is an optimal recursive linear algorithm for processing the noisy 
measurements. For calculating the estimation of the system state and required values, the 
algorithm processes each observation no matter the accuracy. It includes all the available 
knowledge on:  
− system dynamics and dynamics of surveying instruments, 
− statistical characteristics of surveying errors, system errors and dynamics of the model, 

and 
− initial values of wanted quantities.  
 
In a recursive data processing the algorithm of the Kalman filtering does not require the 
storage of all measurements and states of the system, since in the calculation of the wanted 
quantities only the data from the previous step are required. This feature is the one basic 
advantage of the algorithm when applied to large systems with a large quantity of data. The 
model is linear. In case there are non-linear relations, they are linearized with development of 
functions into the Taylor series. The Kalman filter assumes that the noise of the system and 
measurements is white and Gaussian. The white noise is random process te , where the 
variables are uncorrelated jtE jt ≠= ,0)( ee , with the zero-mean value 0)()( == tEt eeμ  and 
variance 22 )( sE t =e . If the noise is normally distributed, we refer to it as the Gaussian noise.  
 
Let us observe the model of the Kalman filter. The Kalman filter deals with a random 
process, which is described by a linear process equation (Welch, Bishop, 2004):                               

kkk wxAx +⋅=+1                  (1) 
and measurement equation: 
                                          kkk vxHz +⋅=  ,                                          (2) 
where:  
A  … state transition matrix  kx  ... system state vector at time kt  

kw … process white noise   H … measurement matrix 
kz … vector of observations at time kt    kv ... measurement white noise. 

 
Matrix [ ]nn ,A  in process equation (1) connects the current value of the system state vector kx  
at time kt  and the predicted value of 1+kx  at time 1+kt . Matrix [ ]nm,H  in measurement equation 
(2) connects the system state vector kx  with observations kz . Matrices A  and H  can be 
functions of time, however they are assumed to be constant for most processes. The algorithm 
estimates the vector of wanted quantities n

k ℜ∈x  ( n  is the number of unknowns for time step 
k ) based on discrete observations m

k ℜ∈z  ( m  is the number of measurements for time step 
k ), at time kt . Vectors kw  and kv  represent the system error and random measurement 
errors. For the variables it is assumed that they are white, and with normal probability 
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distribution; )N(0, ~)( kkp Qw  and )N(0, ~)( kkp Rv  accordingly. The corresponding covariance 
matrices kQ  and kR  of vectors kw  and kv  are given as: 
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Through the process they can be constant or functions of time, changing with each 
measurement time kt . The measurement covariance matrix [ ]mm,R  is based on the known 
accuracy of measurement systems or based on previous measurements. The determination of 
the covariance matrix of system [ ]nn ,Q  is a more difficult one, since the process, which is being 
estimated, usually cannot be directly observed. 
 
In deriving the Kalman filter the goal is to find equations that compute the a posteriori system 
state estimate kx̂ as a linear combination of an a priori estimate −

kx̂  and a weighted difference 
between the actual measurements kz  and the predicted measurements −⋅ kxH ˆ  : 
                  )ˆ(ˆˆ −− ⋅−⋅+= kkkk xHzKxx  .                                           (3) 
 
The difference −⋅−= kkk xHzd ˆ  represents the innovation or the measurement correction and 
reflects the discrepancy between the predicted measurements −⋅ kxH ˆ  and the actual 
measurements kz . The value of residual 0=kd  means a total agreement of the predicted and 
actual measurements. The question arises of how to define matrix [ ]mnk ,K , the Kalman gain, 
which would enable the best – optimal a posteriori system state estimate. As a criterion of the 
estimate the minimum sum of squares of residuals was chosen, providing a solution of the 
optimal Kalman gain kK : 

                   
k

T
kkk

T
kk

k RHPH
HPK

+⋅⋅
⋅

=
−

−

 .                                      (4) 

 
In case when the covariance matrix of observations kR  (diagonal elements yield the accuracy 
of observations, that is, the variances of observations) approaches zero, value kK  converges 
to kH/1 . The actual observation kz  is trusted more and more, while the predicted value −⋅ kxH ˆ  
is trusted less and less. Reversely, as the a priori covariance of the system state vector 

−
kP approaches 0, the vector of observations kz  is trusted less and less, and the predicted value 

of observation −⋅ kxH ˆ  is trusted more and more. The entire Kalman loop is depicted in F.3. The 
Kalman filter iteratively corrects the Kalman gain kK  which makes the estimation of the state 
vector to converge towards an optimal solution. The estimation is optimal if kw  and kv  are 
zero-mean white noises with Gaussian distributions (Wira, Urban, 2000). 
The Kalman filter estimates the process based on reverse control. The filter estimates the 
process unknown for a specific point in time, for which discrete observations with the 
presence of noise are performed. The filter is comprised of time equations of predictions and 
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observation equations – correction equations. The time equation gives an a priori system state 
estimate for the next time step, which is based on the current estimate of the unknowns and 
its covariance matrix. This is followed by a reverse control and correction of the a priori 
estimated values based on performed observations. The a posteriori system state vector 
estimate and its covariance matrices are calculated. Hence, the Kalman filter is an algorithm 
for solving numerical problems, based on predictions and updates of predictions.   
 

 
 

Figure 3: The Kalman loop (Brown, Hwang, 1992) 
 
3. NUMERICAL EXAMPLE OF THE LINEAR KALMAN FILTER 
 
3.1 Instrument and Setting-up of a Test Coordinate System 
 
At the Faculty of Civil and Geodetic Engineering of the University of Ljubljana a test local 
coordinate system was set up, with a trajectory for simulation of reflector movement (F.4). 
The observations were performed with the electronic tachymeter TCRA1105plus (Leica 
Geosystems) in the LOCK mode, which enables the instrument to track the moving reflector. 
TCRA refers to the automatic tachymeter with automated tracking and pointing of the prism 
with an in-built IR and laser RL distance meter, which enables the reflectorless measuring of 
distances (http://www.geoservis.si/). By using the AutoRecord software (Leica Geosystems) 
that is installed in the instrument, the measurements are automated, with relation to the 
chosen criterion to be registered: time interval, change of distance, or time when no motion of 
the reflector is detected. The program was fitted especially for the instruments with the option 
of Automated Target Recognition (ATR) (Kogoj et al., 2004). For measurements the time 
criterion of registration was chosen (slope distance, horizontal angle, zenith distance), that is, 
the time interval s1=dt . The simulation of movement of 360°-reflector was performed 
manually. During the measurements, the instrument was mounted on pillar I  with known 
spatial coordinates in the local coordinate system )100,100,100(),,( =zxy . The initial direction – 
x  direction – was defined with the direction towards pillar II . The y  axis was directed 
towards pillar III . The axis of the movement of the reflector was approximately parallel to the 
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y  axis. The observations were stored in the inner memory card of the instrument. The *.gsi 
file was transferred to the outer computer by using the Leica SurveyOffice software. The 
batch data of observations were then translated from the *.gsi text file of format 16 into *.txt 
text file, which is the input file in the Kalman filter algorithm.  
 

 
 

Figure 4: Local coordinate system 
 
3.2 Model of the Linear Kalman Filter 
 
In the text file the spatial coordinates are stored, as they are calculated by the instrument for 
each moment of measurements. In the linear Kalman filter the spatial coordinates represent 
the measurements [ ] Tzyx=z  and components of the system state vector – desired 
quantities [ ]T

zyx vzvyvx=x  (spatial coordinates of reflector state in a given moment 
and velocity in each direction) at the same time. 
In the calculation of the Kalman filter unaccelerated motion is assumed, 2m/s0=== zyx aaa . 
From the known equation of movement dtvss *0 +=  one can derive the process equation (1) 
as a matrix kk xAx ⋅=+1 : 
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The equation of measurements kk xHz ⋅=  is as follows: 
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For calculation of the Kalman filter algorithm with time equations of predictions and 
measurements equations of corrections the following values have to be defined:  
- a priori system state [ ]1,60x  and its covariance matrix [ ]6,60P  
- measurement covariance matrix [ ]3,3R , and 
- process noise covariance matrix [ ]6,6Q . 
 
The a priori system state of the spatial position of the reflector is based on previous 
measurements. The initial values of components of the velocity vector are determined as 
average velocities in single directions. For the determination of the a priori covariance matrix 
of the initial system state vector of unknowns P  the accuracy of determination of initial 
position m01.0  and velocity components m/s01.0  are assumed. The covariance matrix of 
observations R  is based on the capacity of the instrument in determining the position 
components captured with kinematic measurements; it is [ ] )m0001.0diag( 2

3,3 =R  and is 
independent of time. The process noise covariance matrix Q  is the diagonal matrix 

[ ] )1diag(6,6 ⋅= qQ , where q  is the appropriate scalar.      
 
3.3 Interpretation of Results 
 
The numerical case shows the dependence of results from the relation between the process 
noise (matrix Q ) and measurement noise (matrix R ). The accuracy of observations – matrix 
R – is constant through the process. The results are given for two different values of 
parameter q  of the process noise covariance matrix Q . The number of measurement epochs 
in both cases is 48=N .  
 
The figures below depict the results for the value of 00001.0=q . F.5 represents the 
convergence of traces of matrix P , whose diagonal elements are variances of computed 
system state values – components of position and velocity. The standard deviation of single 
position components converges to the value of mm5.7  and velocity components to the value 
of mm/s5  (F.6). 
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Figure 5: Trace of matrix P  for 00001.0=q  

 
Figure 6: Standard deviations of position components and  

velocity components for 00001.0=q  
 

F.7 represents the position components: measured, predicted and filtered values.  
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Figure 7: Measured, predicted and filtered values of position components  
of the reflector for 00001.0=q  

 
Figure 7: Measured, predicted and filtered values of position components  

of the reflector for 00001.0=q  
 
From the velocity graphs (F.8) it is evident that the velocity in x  direction and z  direction 
was approximately zero, and in y  direction approximately cm/s2=yv .  
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Figure 8: Velocity components for 00001.0=q  

 
In the continuation a case of poor selection of process noise is presented, and a resulting filter 
divergence. The boundary value of 0=q  was chosen, indicating a full confidence into the 
mathematical model. Figures 9 and 10 show that the convergence of trace and standard 
deviations of components of spatial position and velocity were achieved. The standard 
deviation in positioning is three times better than in case 00001.0=q . Based on the results we 
could conclude that the model is fully fitted for evaluation of kinematic measurements. 
However, when looking at the y  component (F.11), we can notice the occurance of filter 
divergence. The divergence occurs when the value of the covariance matrix P , more 
specifically, of the diagonal elements, computed by the filtering process, become 
unacceptably small compared to the actual estimate of the unknowns (Sorenson, 1970). The 
discrepancy between the filtered and the measured values in y  component (F.11) can be as 
much as cm5 , which is, considering the capacity of the instrument and velocity of 
movements, considerably too high.  
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Figure 9: Trace of matrix P  for 0=q  
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Figure 10: Standard deviation of position and velocity components for 0=q  

 
Figure 11: y  component for 0=q  

If we select the value of q  too high, it may occur that the trace of matrix P  converges to a 
high value (F.12) and as a result the standard deviations of unknowns are considerably too 
high as to the accuracy of measurements. The filtered values in such case follow the 
measured ones (F.13), since the level of confidence in observations in case of large q  is 
higher.  
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Figure 12: Trace of matrix P  for 10=q  

 
Figure 13: Measured, predicted and filtered 

values of reflector position at 10=q  
 
4. CONCLUDING REMARKS AND PERSPECTIVES 
 
In terrestrial surveying geodesy we have witnessed rapid development of geodetic 
instruments, resulting from higher capacity of measuring sensors and computer software. 
Besides the preliminary condition of knowledge on geodetic methods and understanding of 
procedures we can, by knowing the operation and capacity of measuring sensors and 
computer programs, considerably expand the possibilities of use of the terrestrial geodetic 
instruments. One of the possibilities is the capture of kinematic processes. 
 
Due to the movement of the reflector, it is not possible to perform redundant measurements in 
kinematic measurements, which would reduce or remove the influences of the working 
environment, instrumental errors and negative effects of the mathematical model. In general, 
the requirements in kinematic measurements are more extensive ones. The choice of the 
instrument is key to the capture of kinematic (dynamic) processes. Also, one needs the select 
proper procedures for evaluation, which, beside the determination of unknowns, enable 
accuracy estimates. Hence, in kinematic measuring techniques we deal with time analyses 
and filtering techniques.  
 
The efficiency of the mathematical algorithm of the Kalman filter has become widespread in 
geodesy, electrical engineering, medicine etc., that is, in tasks that require the estimation of 
unknown values as a function of time based on filtering of the noisy observations. In geodetic 
engineering, the efficiency of the mathematical algorithm is primarily in the tasks where we 
cannot perform redundant observations, that is, in the areas of navigation, continuous 
measurements of a moving object (monitoring of displacements and deformations).  
Based on experience, we can conclude that in the kinematic measurements special attention 
should be given to:  
- Capacity of the used instrument for kinematic measurements: 
In the TPS1100 series of Leica Geosystems tachymeters the high dependence of positioning 
accuracy from the movement velocity of the reflector is identified. The deviation in the 
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position can be as much as several centimeters (Stempfhuber, 2004), depending on the 
velocity, and is a result of the time delay during the measurement of angles and distances. In 
December 2005 an improved synchronization (TPS1200 Series), was introduced, where the 
time delay between the measurement of angles and distance is estimated at only several 
milliseconds.  
- Adequacy of the model for evaluation – in this example Kalman filter model:  
The convergence of traces and standard deviations is only the inner measure of reliability of 
the model. In future, one would need to set up a proper calibration system with a known 
trajectory, which would provide an estimation of the adequacy of the mathematical model 
and ensure the external measure of reliability. In such a system, one could test also the 
capacity of the instrument for kinematic measurements as a function of measured values and 
movement velocity.  
- Non-linear filtering:  
In future work some other techniques have to be researched. The linearized and extended 
Kalman filter model, where the observations of distances and angles are directly processed in 
filtering, has to be developed and compared with other nonlinear filters, such as unscented or 
particle filters. 
- Adaptive techniques:  
A well-known limitation of the Kalman filter is the assumption of known a priori statistics to 
describe the process and measurement noise, respectively. To overcome the fact that the 
model is not always available or that it can change online, the filter has to adapt itself so as to 
reflect the system dynamics without any a priori knowledge. One of the possible expansions 
of the Kalman filter, which can tackle the problem of imperfect a priori information, is 
adaptation through the filter learning process based on the innovation sequence (Mohamed 
and Schwarz, 1999). 
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