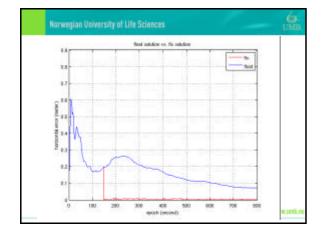
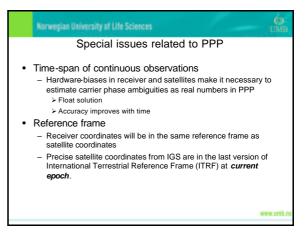
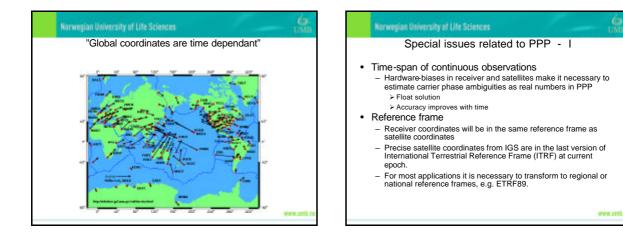

Norwegian University of Life Sciences Continue Surveying using GPS Precise Point Positioning Precise Point Positioning (PPP) General correction model Special issues related to PPP Development of operational software Results from projects Summary




Norwegian University of Life Sciences


Handling of the tropospheric delay

- Correction model fed with apriori meteorological parameters (temp, pressure, humidity)
 - standard atmosphere
 - look-up table
- Correction model fed with meteorological observations of temp, pressure, humidity
- Estimation of residual tropospheric delay in the adjustment process.
 - Zenith delay
 - Gradients
 - Geometrical considerations

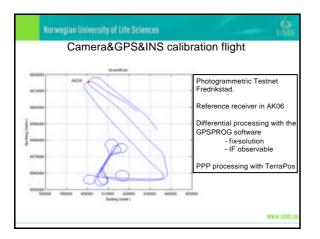
Compare Interest of UK Steries Special issues related to PPP Special issues related to PPP Ardware-biases in receiver and satellites make it necessary to estimate carrier phase ambiguities as real numbers in PPP Ploat solution Accuracy improves with time

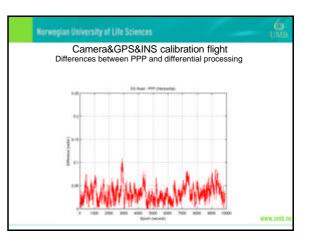
Norwegian University of Life Sciences

Special issues related to PPP - II

- Latency of orbits and satellite clock corrections from IGS
 Using IGS-products, PPP is presently a post-processing method
 - IGS is working towards real-time products
 Real-time solution developed by JPL is used in some
 - commercial solutions
 - NAVCOM
 - FUGRO XP

orwegian University of Life Sciences

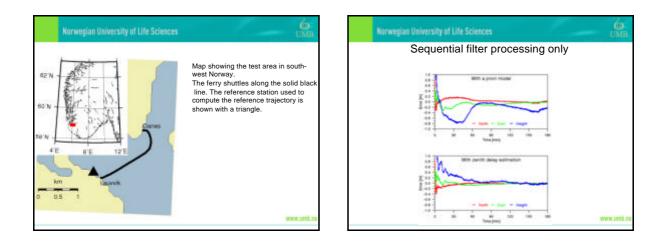

Development of an operational PPP software

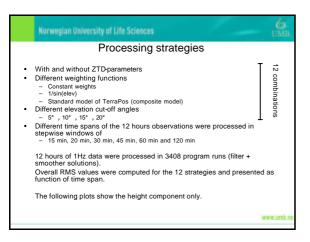

- In-house software ABSPOS developed at Norwegian University of Life Sciences
 - Successfully used in several projects
 - Extensively tested by Hydrographic Survey of Norway
 Accuracy
 - Accuracy
 Reliability
 - Used as sole solution by Hydrographic Survey of Norway in high precision seafloor mapping from 2004.
 - Increased interest from operators in airborne photography and laser scanning
- Commercialisation by the Norwegian company TerraSat
 - TerraPos

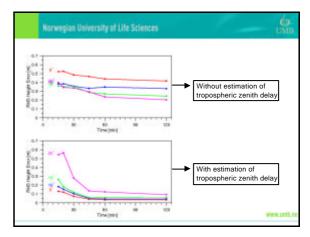
WWW.LITTD. IN

Effect	
	Method
Satellite antenna offset and phase center variations	Official IGS antenna calibrations
Satellite hardware biases	Official IGS calibrations, estimation of system specific effects.
Satellite yaw	Nominal model, user definable during eclipses and noon-turns, e.g. editing or stochastic correction.
Ionospheric delays	Ionosphere-free linear combinations
Tropospheric delays	Apriori models, estimation of residual effects
Receiver antenna offsets and phase center variations	Official IGS calibrations
System specific receiver hardware biases	Estimation
Solid earth tides	Model recommended by the IERS
Ocean loading Rotational deformation due to polar motion	Model recommended by the IERS Model recommended by the IERS

Konvegian University of Life Sciences Typical accuracy (RMS) when processing data		u u	
i ypicai a	ccuracy (RMS) w	nen processing data	or high quality
Dynamics	Duration (hours)	Horizontal (meter)	Vertical (meter)
	24	0.01	0.02
Static	6	0.02	0.04
	1	0.05	0.10
Kinematic	24	0.03	0.04
	6	0.03	0.05
	1	0.15	0.20
	1 1		WWW.D


Norwegian University of Life Sciences


Marine test


- Large scale test carried out by the Norwegian Hydrographical Service
- Topcon Legacy GNSS receiver on a shuttle ferry as well as in a reference station on land
- 40 days of continuous observations at 1Hz in March-May, 2006.
 Differential Real-Time Kinematic (RTK) solutions were recorded
- Differential Real-Time Knematic (RTK) solutions were recorded along with raw data.
- Differential post-processing with Geogenius v.2.11 from Spectra Precision Terrasat in 24 hour batches.
- Quality criteria
- Only fixed solutions accepted (resolved double difference ambiguities)
 3D discrepancy between RTK and post processing smaller than 0.02 m
- Final reference trajectory computed as average solution between RTK- and posts processed solution.

AAA TLUE

In the end

Using a state-of-the-art PPP software for kinematic processing of "high quality" GPS observations:

- height coordinates at the sub-decimetre level is reached after
- height coordinates at the sub-deciment level is reached after approximately 30 minutes (one sigma)
 height coordinates at the sub-decimetre level is reached after approximately 60 minutes (two sigma)
 the accuracy consistently improves with length of time span of continuous observations
- the use of low elevation observations (e.g. down to 5°) is beneficial

www.umb.r