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SUMMARY  
 
The Microsoft Kinect™ sensor has gained popularity in a large number of applications 
beyond its intended original design of being a 3D human interface device, including indoor 
mapping and navigation of pushcart and backpack sensor platforms. Indoor mapping and 
personal navigation systems are generally based on the multisensory integration model, as 
currently no sensor itself can provide a robust and accurate navigation solution. To assess the 
error budget as well as to support the design of such systems, the individual sensor error 
budgets should be known (estimated). In this paper, a performance analysis of the Kinect 
sensor is provided based on a series of indoor tests, where sufficient control, based on UWB 
trajectory reference, was available. The main goal of the study is to assess the trajectory 
reconstruction performance from Kinect imagery only, using widely available mainstream 
computer vision methods to process 2D and 3D image sequences. Test data was acquired by 
the Kinect sensor mounted on the top of a pedestrian backpack navigation prototype in 
forward looking orientation with a clear field of view, and a user walked a hallway loop in 
several patterns. The results were evaluated based on a UWB-based reference solution. 



Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor–based  
Trajectory Recovery,  (7172) 
Charles Toth, Dorota Brzezinska (USA), Allison Kealy (Australia) and Guenther Retscher (Austria) 
 
FIG Congress 2014 
Engaging the Challenges - Enhancing the Relevance 
Kuala Lumpur, Malaysia 16 – 21 June 2014 

2/12 

Personal Navigation and Indoor Mapping:  
Performance Characterization of Kinect Sensor-based Trajectory Recovery 

 
Charles TOTH, Dorota BRZEZINSKA, USA 

Allison KEALY, Australia and Guenther RETSCHER, Austria 
 
 
1. INTRODUCTION 
 
Small-size and low-cost imaging sensors are widely used in a multitude of consumer devices, 
providing medium-quality, typically redundant data. Usual application of these devices has 
the potential to be extended and applied for mapping and navigation purposes. Besides typical 
imaging mobile devices such as cell phones or compact digital cameras, others such as mobile 
imaging sensors on vehicles and humans (personal navigation) can be adopted and used. For 
example, the Microsoft Kinect™ (Microsoft, 2014), which has been sold in the tens of 
millions, is relatively small and, although not typically mobile, can easily be carried by a 
human. One advantage of the Kinect™ is the availability and simultaneous use of both 
passive and active imaging sensors, significantly extending the possibilities of Kinect™ 
applications. Similar to other simple devices/sensors, the use of Kinect™ is also limited, 
particularly by the range of the active sensor and by data accuracy. In addition, low data 
accuracy is a logical consequence of the low cost of a sensor. The influence of low data 
quality, however, may be somewhat offset by data redundancies. In addition, its limited range 
is also restrictive, being typically a few meters for the Kinect™ active sensor. This, however, 
is generally acceptable for indoor mapping, especially in corridor environments where the 
distances between objects are generally short. 
 
In mobile mapping, remotely sensed data are usually complemented by navigation sensor data 
to support platform georeferencing. In most outdoor applications, integrated GPS and IMU 
sensors are used for that purpose. The use of navigation sensors is not mandatory for such 
active sensors as laser or radar. In contrast, aerial images can be processed based just on 
ground control points (GCP), though the use of georeferencing is beneficial. Indoors, GPS 
cannot be used, posing challenges to any mapping in an unknown environment. This study 
aims at assessing the performance potential for indoor mapping of a low-cost sensor, 
Kinect™. This paper is focused on analyzing the 2D and 3D Kinect imagery matching 
performance that is realistically achievable under typical indoor conditions. In other words, no 
additional sensory data is used to reconstruct the platform trajectory.  
 
Simultaneous navigation and mapping based on the imagery is usually known as visual 
odometry (Scaramuzza and Fraundorfer, 2011) where the critical part of the computation is 
the matching of image frames. The Kinect™ sensor is an RGB-D (Red, Green, Blue, and 
Depth) camera, so there is no limitation of unknown scale of mono visual odometry. Different 
algorithms for frame matching in visual odometry based on the RGB-D camera models are 
proposed, see (Huang et al., 2011; Weinmann et al., 2011; Molnar and Toth, 2013; Whelan et 
al., 2013; Henry et al., 2014). In this work, a simple approach is proposed for Kinect™ data 
matching.  
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SYSTEM CONFIGURATION 
 
The Kinect sensor is a motion sensing input device for the Xbox 360 video game console, 
originally developed by PrimeSense and later acquired by Microsoft. It allows the user to 
control and interact with the console by just giving voice and body gesture commands. Beside 
voice sensors (microphones), Kinect™ contains imagery sensors, including a basic RGB and 
an infrared (IR) sensor with an IR emitter, see Fig. 1. Detailed description of depth images 
generated by the Kinect™ sensor can be found in (Macknojia et al., (2012).  

 
Figure 1: Kinect™ sensor. 

 
The Kinect™ has three primary sensors: a 3D camera (IR-based active sensor), a conventional 
optical RGB sensor (2D camera), and a microphone array input. The device is USB-
interfaced, similar to a webcam, and appears as a “black box” for the users. Note that very 
little is known of the sensors, internal components and processing methods are stored in the 
firmware. The emitter projects a structured light pattern of random points of light which is 
detected by the IR camera and then processed into a depth image. The 2D camera can acquire 
standard VGA, 640x480, and SXGA, 1280x1024, images at 30 Hz. The color formation is 
based on Bayer filter solution, transmitted in 32-bit and formatted in the sRGB color space. 
Typical images are shown in Fig. 2; note the dark areas in Fig. 2b, showing that beyond a 
certain range 3D data recovery is not possible. The FOV of the 2D camera is 57° x 43°. The 
3D camera can work at two resolutions with frame sizes of 640x480 and 320x240, 
respectively. The range data comes in 12-bit resolution, and the sensors’ spatial relationship is 
shown in Fig. 1 
 

  
(a) (b) 

Figure 2: Kinect™ images; (a) RGB and (b) colored 3D depth image. 
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Tests were performed with the Kinect™ installed on a backpack personal navigator prototype, 
developed earlier at The Ohio State University (OSU) Satellite Positioning and Inertial 
Navigation (SPIN) Laboratory (Grejner-Brzezinska et al., 2010; Toth et al., 2012; Zaydak et 
al., 2012). The Kinect™ sensor was mounted on the top of a backpack frame in a forward 
looking orientation with a clear field of view, and data was collected at 5-30 Hz as a user 
walked a hallway loop in several tests, see Fig. 3a. For reference, an UWB network was used, 
providing an overal trajectory accuracy about 10 cm (1σ), see Fig. 3b, see (Koppanyi et al., 
2014). The OSU backpack personal navigator prototype contains about ten sensors that 
acquired data during the tests; most of this data was not used in this work. 
 

  
(a) (b) 

 

Figure 3: OSU backpack personal navigator prototype; (a) Kinect™ and (b) UWB sensor. 
 
 
2. 2D IMAGE BASED TRAJECTORY RECONSTRUCTION 
 
To reconstruct the platform trajectory from the 2D image data, the spatial relationship 
between images should be established; basically finding the relative orientation between 
images, preferably for all possible image pairs and not only between consecutive ones. Once 
the image projection centers are known in the object space, the trajectory can be formed and 
transferred to any point or sensor location on the platform. The spatial relationship between 
2D images can be described by the collinearity equations (Kraus, 1993), see Eq. 1, and 
standard photogrammetry solutions can provide the relative and/or exterior orientation of 
images by space resection. The proposed approach, the incremental trajectory reconstruction 
algorithm, is implemented as photo triangulation. The key aspect of any photogrammetric 
processing of the image is finding sufficient number of corresponding points and that the 
spatial distribution of the point is as even as possible. 
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In this study, the corresponding image points are obtained by using SIFT (Scale-Invariant 
Feature Transform) features (Lowe, 2004). Examples of SIFT keypoint locations on three 
consecutive images are shown in Fig. 4. The upper part depicts an easy case, where there are 
many features available for matching. In contrast, the lower part shows a sequence of images 
with less texture, and, consequently, the number of SIFT features are low. In addition, the 
distribution of the feature points is weak, as the points practically fall along a line. Note that 
the overlap is relatively small in that case. Note that the relatively poor performance is to a 
large extent due to the forward looking orientation of the camera, which makes intersection 
geometry weak. 
 

 
 

Figure 4: SIFT feature extraction and matching examples; top row shows normal situation, 
while the point distribution and image overlap are weak in the bottom row. 

 
Incorrectly matched SIFT points are automatically eliminated in a simple, robust estimation 
procedure; points with residuals larger than three pixels are not used in the next iteration of 
the space resection process. RANSAC (RANdom SAmple Consensus) was also considered 
for that purpose, but experiences showed that the three pixel threshold works reliably for our 
data. SIFT performs well for image pairs of sufficient overlap and with good texture. 
Trajectory reconstruction performance is shown in Fig. 5a, clearly indicating that only shorter 
sections can be reconstructed based on 2D images at an acceptable level. 
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3. 3D IMAGE BASED TRAJECTORY RECONSTRUCTION 
 
In this study, the ICP (Iterative Closest Point) algorithm, widely used in robotics and object 
reconstruction, is tested (Tokekar et al., 2009; Surmann et al., 2003; Newcombe et al., 2011). 
ICP can support various geometrical models, and the 3D similarity transform with unit scale 
was used in the experiments. Note that there are several other techniques to match 3D image 
sequences. Results from a method developed at OSU were reported in (Markiel, 2012). Since 
ICP is rather computationally intensive, the Kinect™ 3D images, the point clouds, were 
decimated to two 5x5x5 cm voxel cubes to speed up execution. Fig. 5 shows the reconstructed 
trajectories based on 2D and 3D Kinect™ image sequences. Clearly, the ICP-based solution 
represents a better performance compared to the 2D solution; note that the 2D image-based 
trajectory spreads more in space. But there are a few big jumps, where ICP was unable to 
provide a good match; the color bar on the right shows the RMS between point clouds. These 
problems are related to situations with significant changes in the image content, such as 
turning or sudden large movement between image captures. In summary, the trajectory 
reconstruction, based on ICP works fine when the RMS is small; this is mostly the case when 
the difference between the point clouds is small. Analyzing the cases in detail, where ICP 
fails, it can be stated that with a good initial estimate ICP works better, likely resulting in a 
correct solution. 
 

  
(a) (b) 

 
Figure 5: Trajectory reconstruction; (a) 2D image based and (b) 3D image based. 

 
 
4. INTEGRATED SOLUTION BASED ON COMBINING 2D AND 3D IMAGES 
 
Comparing where the 2D and 3D methods fail or succeed shows some complementarity. For 
example, at quick turns, the 2D generally provides good performance because of the better 
image geometry, while motion along straight lines can be better captured by ICP. The concept 
of combined matching presented in this work basically consists of first matching consecutive 
frames in 2D space, (which is realized by SIFT-based image matching), and then transferring 
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matching points into the 3D space. Knowing the interior and relative orientation parameters of 
Kinect™ 2D and 3D sensors, it is possible to assign points from 2D space to matching points 
in 3D space and, consequently, perform point cloud registration as long as the translation and 
rotation parameters of each point cloud are known. The spatial relationship between two 
frames can be uniquely calculated based on three pairs of corresponding 3D points. 
Obviously, a higher number of matching points increases the reliability of the solution. 
However, it is not mandatory to use all possible matching points or to use techniques for 
dense matching that result in longer computation time, as it is more important to use points 
distributed as evenly as possible in the common area of the two frames.  
 
During sensor calibration, the spatial relationships between the imaging sensors as well as the 
parameters of the sensors’ interior orientation are estimated, and thus, the 2D and 3D image 
data can be easily related to each other. In the proposed approach, images are created based 
on the colored point cloud. One of the advantages of this solution is that after performing 
SIFT and finding 2D matching points, there is no need to search for conjugate points in 3D 
space as the 3D coordinates can be treated as additional features for each pixel of the artificial 
image. The combined trajectory reconstruction include the following main steps: 

1. Image creation from the point cloud is generally simple, except for areas where there 
is no 3D data, see Fig. 2b 

2. SIFT matching of reconstructed images; our implementation is based on applying 
SIFT individually to the three color bands to increase the number of feature points 

3. Retrieving 3D information of matched points; to remove mismatched point pairs, the 
iterative least squares adjustment that determines the 6-parameter transformation has 
been extended by a weighting scheme, where the point weights are modified at each 
step 

4. Robust estimation of transformation parameters; the basic ICP method for the 3D 
image sequence processing has been modified in several aspects to increase 
performance: (1) the last five 3D images are considered for matching to increase 
robustness by limiting the impact of a low quality image, and (2) the minimization 
criterion has been extended to include RGB information; this way not only the 
Euclidian distance but the color distance between images is included in the process 

5. Trajectory reconstruction 
 
Fig. 6 shows the result of the combined trajectory reconstruction with the reference solution 
obtained from the UWB network; note the UWB figure shows all the tests trajectories. The 
combined method clearly provides a good solution, except for two epochs, marked by red 
circles in Fig. 6a, where the trajectory could not be reconstructed and thus were manually 
connected. Once the trajectory is estimated, the point clouds can be merged. As an example, 
the final results of about 500 stitched point clouds with reconstructed trajectory is shown in 
Fig. 7. Clearly, the general shape of the corridor is preserved in the stitched point cloud. 
However, due to the incremental nature of the selected approach, some drift can be noticed. 
The trajectory was reconstructed quite well, though two jumps are present. 
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(a) (b) 

 
Figure 6: Trajectory evaluation; (a) combined 2D and 3D image based trajectory 

reconstruction, and (b) UWB reference solutions. 
 

 
Figure 7: Stitched point cloud (ceiling removed) and reconstructed trajectory (red). 
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5. CONCLUSIONS 
 
Initial results indicate that the method of combining Kinect™ 2D and 3D imagery for indoor 
navigation and mapping is feasible using low-cost RGB-D sensors. The test results revealed 
that trajectory reconstruction based on 2D imagery is generally unreliable, while matching 3D 
images (point clouds) provides somewhat better results, though no overall solution can be 
achieved in general. The proposed combined trajectory reconstruction, based on 2D and 3D 
images, properly estimated the trajectory and, consequently, produced a stitched point cloud 
that is a correct representation of the mapped area. The circumstances where the algorithm 
fails can be identified reliably. It must be emphasized that failures occurred only within 
specific conditions, such as fast turns, which seem to be unusual behavior during indoor 
navigation, and the overlap between images is small, so the matching may fail. Note that by 
introducing other sensor data, such as IMU data, these situations generally can be remedied. 
Finally, the proposed algorithm for point cloud stitching can be further improved by adding 
keyframes or implementing a Kalman filter to decrease the influence of the drift caused by the 
basic incremental approach. 
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