

Prosented at the FIG o Working Week 2021, Prosented at the FIG o Working In the Pethotemis.

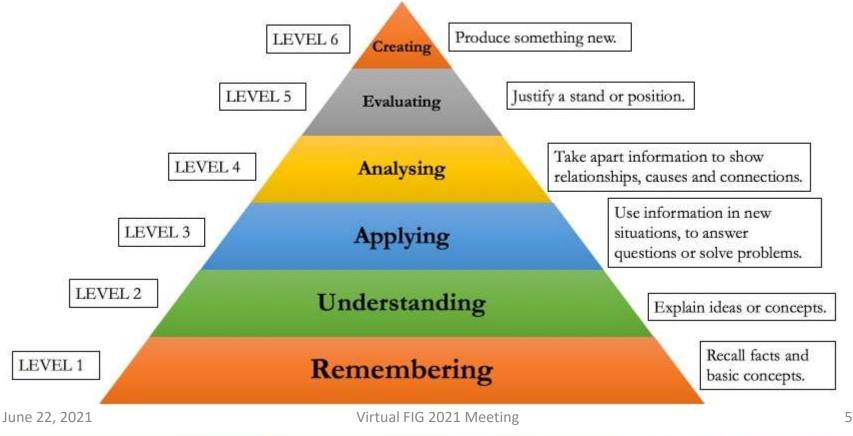
> Department of Geomatics Engineering Course design and development in hydrographic surveying

Ivan Detchev, Walther Johnson, and Tyler Greene Tue, June 22, 2021 Virtual FIG 2021 Meeting

- Located in Calgary, Alberta (east of the Rocky Mountains)
- Transitioning from oil & gas to high tech industry

- One of the few geomatics engineering departments in Canada
- The geomatics engineering degree opens the doors for two professional designations:
 - Licensed land surveyor (e.g., CLS, ALS)
 - Professional engineer (P.Eng.)

- Canadian Engineering Accreditation Board (CEAB)
 - Holistic approach based on accreditation units and graduate attributes


- Canadian Board of Examiners for Professional Surveyors (CBEPS)
 - Transition from prescribed course topics to learning

outcomes

- Bloom's taxonomy
- Alignment between learning outcomes, teaching & learning activities, and assessment

- Course name and number: ENGO 545 Hydrographic surveying (offered in fall semester, Sept to Dec)
- Fourth year technical elective in the geomatics engineering degree program
- Mandatory course for the cadastral concentration
- Challenge: extensive content with limited contact hours

US Army Corps of Engineers

- Selected course topics
 - Underwater acoustics, tides, water levels, and positioning
 - Sounding methods: single beam echo sounding (SBES), side scan sonar (SSS), multi-beam echo sounding (MBES)
 - Hydrographic survey design and specifications
- Selected learning outcomes
 - Recognise, interpret, and adapt international standards for hydrographic surveying for the safety of marine navigation
 - Design SBES and MBES surveys to meet international standards and specifications
 - Perform echo sounder calibration in order to mitigate system errors

Course design (cont'd)

- Selected teaching & learning exercises
 - Individual and group in-class exercises
 - Programming and software labs
 - Plate check calibration
- Assessment
 - Prior to COVID: exam heavy
 - During COVID: more frequent
 lower impact homework

- Course name and number: ENGO 501 Field Surveys (offered in summer term, Aug to Sept)
- Fourth year core course in the geomatics engineering degree program
- Hydrographic surveying is one of several full day exercises: mapping a lake bed and performing a plate check calibration

Plate check implementation: platform

Fishing boat

Two-canoe catamaran

The two-canoe catamaran is the preferred option as long as the canoes are compatible with the aluminum frame

Plate check implementation: docking the HyDrone

Ropes

Custom contraption

The custom contraption is designed to keep the HyDrone from moving and also not to interfere with its draft

Plate check implementation: suspension mechanism

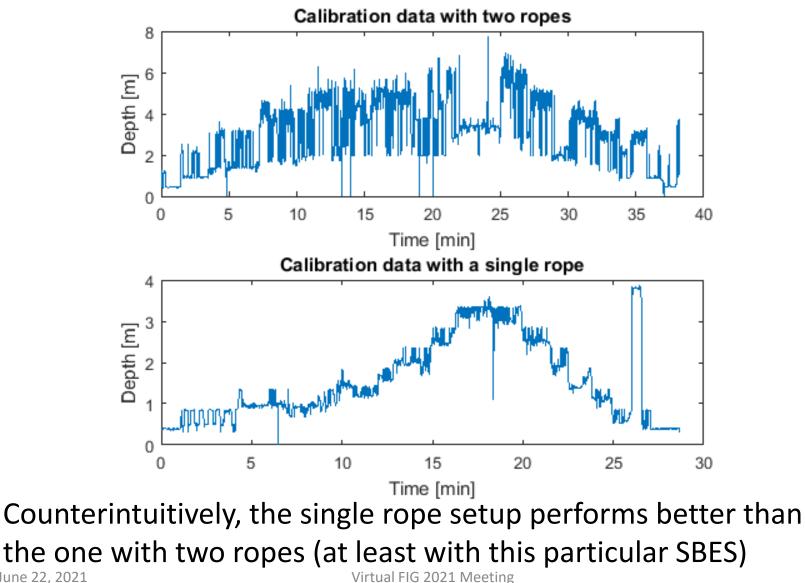
Manual

Winch

The custom-made gear reduction winch system with a spool helps improve the precision of the measurements

Plate check implementation: points of contact

Single rope



Two ropes

Plate check implementation: points of contact (cont'd)

June 22, 2021

- Described the geomatics engineering program at the University of Calgary
- Discussed applying Bloom's taxonomy when defining learning outcomes
- Explained the recent (re-)design of a theory course in hydrographic surveying
- Showed experiments related to performing a rigorous plate check calibration for a hydrographic surveying field exercise

Theory course

- Add more in-class exercises
- Overhaul the lab exercises
- Field exercise
 - Test more canoes
 - Try a rope compatible with a commercially available winch
 - Use a different type of SBES
 - Poll the students about their learning experience

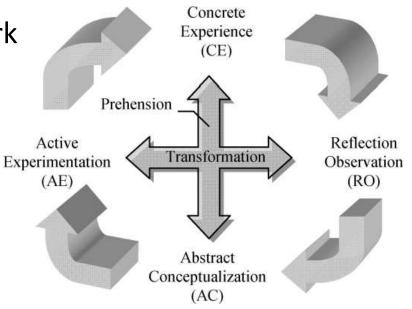
 Program for Undergraduate Research Experience (PURE) at Taylor Institute for Teaching and Learning

Time for questions

?

Theoretical framework

Extra slides



- Learning outcomes
 - Lesson, module, or course level
- Teaching & learning activities
 - Contact hours, type of delivery, focus on student learning
- Assessments
 - Homework, exams, etc.
- Graduate attributes
 - Program level learning outcomes

Alignment!

- Active learning
 - Review questions
 - Team-based learning (TBL)
 - Minute papers
- Experiential learning
 - Laboratory exercises / field work
 - Project-based learning
 - Survey camp
 - Co-op / internships

Distributed / spaced practice

- Accreditation units
 - mathematics, natural sciences, engineering science, engineering design, complementary studies, and other unspecified content

Graduate attributes (introduced, developed, or applied)

- 1) Knowledge base for engineering
- 2) Problem analysis
- 3) Investigation
- 4) Design
- 5) Use of engineering tools
- 6) Individual and team work
- 7) Communication skills
- 8) Professionalism
- 9) Impact of engineering on society and the environment
- 10) Ethics and equity
- 11) Economics and project management, and
- 12) Life-long learning

- Prescribed content topics, sub-topics, and "learning outcomes" for 12 core:
 - C1 Mathematics
 - C2 Least Squares
 - C3 Advanced Surveying
 - C4 Coodinate Systems and Map Projections
 - C5 Geospatial Information Systems
 - C6 Geodetic Positioning
 - C7 Remote Sensing and Photogrammetry
 - C8 Cadastral Studies
 - C9 Survey Law
 - C10 Land Use Planning and Economics of Land Development
 - C11 Business Practices and the Profession, and
 - C12 Hydrographic Surveying

Accreditation: CBEPS

- ... and five elective subjects:
 - E1 Spatial Databases and Land Information Systems
 - E2 Advanced Hydrographic Surveying
 - E3 Environmental Management
 - E4 Advanced Remote Sensing, and
 - E5 Advanced Photogrammetry
- Note: for C12 the approximate distribution of "learning outcomes" among the Bloom's taxonomy categories is:
 - 50% in remembering
 - 15% in comprehending
 - 8.5% in applying
 - 14% in analyzing
 - 11.5% in evaluating, and
 - ~1% in creating