Presented at the fift e-Working Week 20th Presented at the fift e-Working to the herbertann. 21-25 June 2021 in Wirthally in the herbertann. **SMART SURVEYORS FOR LAND AND WATER MANAGEMENT CHALLENGES IN A NEW REALITY**

20-25 JUNE

Alexander LEB and Guenther RETSCHER

10863

Study for the Development of a Guidance and Information System

Based on Wi-Fi for TU Wien

23 June, 15:00 – 16:30 CEST

Introduction / Motivation

- TU Wien has over 12,000 rooms in 30 buildings
- Library has 1,160 m² on six levels
- Development of a campus-wide navigation and information service
- Navigation to a certain bookshelf with low-cost system

IPS Selection Criteria

- No additional hardware deployment
- Use of signals-of-opportunity
- For common mobile devices, such as smartphones and tablets
- High reliability and coverage on campus
- User-friendliness
- Data protection guaranteed

=> Wi-Fi RSSI-based positioning system

PLATINUM SPONSORS

Long-term Signal Observation

significant difference between day and night

Smartphone Dependence

significant offset

ORGANISED BY

SMART SURVEYORS FOR LAND AND WATER MANAGEMENT CHALLENGES IN A NEW REALITY

Smartphone Calibration

multivariate linear regression for offset determination

$$\boldsymbol{y}_{RSSI} = \boldsymbol{a}_S \cdot \boldsymbol{x}_S + \boldsymbol{b}_S$$

RSSI Distribution

AP-DDEG-1 5.0 AP-DDEG-2 5.0 Radio Map Stack Datacube 22 22 35 35 30 30 AP4 AP3 AP425 E ^20 25 [E] A -70 8 AP3AP2 AP210 10 AP1AP1 0 30 35 15 20 25 10 15 20 25 30 35 10 x [m] x [m] \overline{x} TSSAP1 TSS_{AP1},meas. TSSAP-TSS_{AP2.meas.} $\boldsymbol{p}_{\boldsymbol{x},\boldsymbol{y}} = \boldsymbol{s}_{\boldsymbol{RP}_{\boldsymbol{i}},\boldsymbol{x},\boldsymbol{y}} =$ $s_{meas} =$ TSSAP TSS_{AP3},meas TSSAP4 TSSAPA.meas. $p_{x,y} - s_{meas} \rightarrow min \rightarrow s_{meas} = s_{x,y}$ patial Reference System

User Position Estimation

- Probabilistic matching of fingerprints between off- and on-line measurements using the radio map datacubes
- Mahalanobis distance

$$d^{M}(\boldsymbol{f}_{map}^{i}, \boldsymbol{f}_{obs}) = (\boldsymbol{f}_{obs} - \boldsymbol{f}_{map}^{i})^{T} \boldsymbol{C}_{ff_{map,i}}^{-1} (\boldsymbol{f}_{obs} - \boldsymbol{f}_{map}^{i})$$

- Calculation of a weighted square sum of the RSSI differences between off- and on-line phase
- The weighting is inversely proportional to the variance of the off-line fingerprint

Mahalanobis Distance

true location and user orientation

Trimble.

THE SCIENCE OF WHER

PLATINUM SPONSORS

estimated position

Positioning Using the Mahalanobis Distance

CP01, CP02, CP03 and CP05 have been correctly determined The on-line measurement at CP04, however, has its minimum Mahalanobis distance at CP03

Results of 2 kinematic measurement runs

Results of 2 kinematic measurement runs

Cramér-Rao Lower Bound (CRLB) on RMSE

Low CRLB values (dark blue) indicate higher positioning accuracies during the on-line phase, while higher values (red) mean lower accuracy

Concluding Remarks and Outlook

- Sufficient stable Wi-Fi signals can be sensed with RSSI fluctuations of ±5 dBm during the day
- Deviations from ground truth on the meter range
- Smartphone calibration is essential
- Densification and rearrangement of Access Point network beneficial
- Continuous RSSI recordings
- New hardware for Wi-Fi RTT FTM capability
- Combination with other technologies

